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Notes on the Cover Image

The stirring story of Srinivasa Ramanujan is well known: his school days in Kumbakonam, his 

brief college education in Madras (present day Chennai), his discovery of Carr's book 

A Synopsis of Pure Mathematics and the way it opened a completely new world for him, his 

research which he conducted entirely on his own, there being no one around who could 

understand the mathematics he was working on, his famous pair of notebooks in which he 

jotted his findings, his attempts to contact overseas mathematicians, his journey to England 

in 1913 and his work with the British mathematician G H Hardy, the war years which he spent 

in England, his return to India in 1919, and his tragic death just a year later (1920).

Today the world has begun to grasp what an extraordinarily fertile mind Ramanujan had, and 

how deep and path-breaking his work was. The credit for that understanding goes largely to 

the mathematicians Bruce Berndt, George Andrews and Richard Askey, who have done an 

enormous amount of work with his unpublished writings.

It was because of the efforts of these individuals and the Indian astrophysicist

S Chandrasekhar that the bust of Ramanujan depicted above was commissioned and 

sculpted by Paul Granlund in 1984; it was presented to Smt Janaki Ammal, the widow of

S Ramanujan. Another such bust was commissioned for the Ramanujan Institute (University 

of Madras) by Mr Masilamani in 1994.



t is a happy moment for us to release the second issue of At Right Angles. It Ihas a rich fare: a lead article on a classically great theorem in number 

theory which goes by the name “Lagrange’s Four Squares Theorem”, followed 

by articles on games of chance; on the axiomatic basis of origami and an 

unexpected construction possible under the rules of paper folding; on a 

beautiful theorem of Euclidean geometry called “Viviani’s theorem”; and on 

using a spreadsheet to explore the famous conundrum known as the ‘Monty 

Hall problem’.

In July 2012 ICME 12 took place in Seoul, South Korea. This is one of the 

premier events in mathematics education, held once in four years, and we 

have an informally written report on ICME 12 which gives a flavour of an 

ICME. The authors walk you through the lecture rooms of the mall where the 

conference was held, and through the many exhibits. Following this we have 

articles on the role of open-ended questioning in classroom teaching; on 

pitfalls in the teaching of the method of induction; on how to approach 

problem solving in geometry. There are two small cameos in geometry: an 

entry from one of the notebooks of Ramanujan in which a result of geometry 

is manufactured from an algebraic identity, and an example of a proposition 

for which one expects the converse to be true but finds it to be not so. In the 

continuing ‘Math Club’ column we study a seemingly commonplace problem 

that lies in the region shared by geometry, combinatorics and the topic of 

sequences. The ‘Pullout’ in this issue features the teaching of decimal 

fractions. The ‘Review’ page features one of the best used sites in school level 

mathematics: the site belonging to the NRICH project of the University of 

Cambridge.

We have received many appreciative letters from readers telling us how 

happy they are that such a publication has seen the light of day. Two of our 

readers have sent in thoughtful contributions which have been featured on 

the ‘Letters’ page. We hope that such material will continue to flow into our e-

mail Inbox.

It is said that mathematics has a secret garden. Perhaps other fields of study 

have such gardens as well, but mathematics very certainly has one. It is a 

garden where one finds great and exciting stories: of theorems that were 

conjectured hundreds of years ago and proved only recently; of unsolved 

problems; of human struggle and toil; of strange and mysterious connections 

between different topics of mathematics, and between mathematics and art 

and music and sculpture. It is our hope that we will always be able to profile 

stories in this magazine that will help children find this secret garden and 

uncover its delights.

- Shailesh Shirali

From The 
Chief Editor’s Desk . . .
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Tracing the history of a theorem

Lagrange’s Four
Squares Theorem
From conjecture to proof
Why are theorems discussed in class restricted to those in the syllabus? Do we
fear that students would be intimidated by equations and long proofs? In this
article the author traces the development of a famous theorem and its proof.
Read the article not just for the theorem but also to pick up tips on how to use
numerical examples to understand algebraic equations, how to use historical
details to move from conjecture to proof, and how to provide students with
sufficient scaffolding to enable them to prove the theorem for themselves.

Anuradha S. Garge

Number theory is a branch of mathematics in which
we study the integers and rational numbers (e.g., prime
numbers; squares; cubes) and concepts derived from

them. It is a field with a long past and a rich history, and it has
been strongly influenced by the work of mathematical giants like
Gauss, Legendre, Lagrange, Fermat, Euler, Ramanujan, etc. This
article presents the story of a theorem in number theory which is
very easy to state, but it took mathematicians one and a half
centuries to write its full proof! It is named after Joseph Louis
Lagrange, the French mathematician who gave the first complete
proof in 1770.

It is common for a theorem to appear initially in the form of a
‘conjecture’which may be simply an intelligent guess concerning
the properties of some mathematical object; for example, we
have the Four Colour Conjecturewhich went unproven for over a
century before it became a theorem. Such conjectures are usually

Vol. 1, No. 2, December 2012 | At Right Angles 5



easy to verify for small instances of the problem.
But as the size of the problem gets larger,
verification becomes steadily more difficult. So
one needs a proof which does not depend on
case-by-case analysis. It can be an uphill task to
produce such a proof.

The theorem proved by Lagrange concerns a
conjecture made by Bachet, a French
mathematician, about natural numbers written as
sums of squares. Not every natural number is a
square. Can every natural number be written as a
sum of two squares, like 5 = 22 + 12? No, we
cannot write 3 this way (check!). Can every
natural number be written as a sum of three
squares, like 3 = 12 + 12 + 12 and
11 = 32 + 12 + 12? Many numbers can be written
this way, but some cannot; e.g., 7. But we can write
7 as a sum of four squares: 7 = 22 + 12 + 12 + 12.
Can every natural number be written as a sum of
four squares? Amazingly, the answer is Yes; we
never need more than four squares! For example,
we have 2011 = 352 + 282 + 12 + 12, and
2012 = 442 + 62 + 62 + 22.

Note that writing a natural number as a sum of
squares is not difficult; 1 is our friend! But we are
interested in finding the least number such that
every natural number can be written as a sum of
at most that many squares. Experimentation
suggests that we never need more than four
squares, and this is what the amazing theorem of
Lagrange asserts: Every natural number, however
large, can be written as a sum of at most four
squares. (Yes, even big numbers like one lakh
(105) or one crore (107) can be written this way;
see if you can find the expressions for these
numbers! Experimenting further, try to guess
which numbers require three squares and no less,
and which numbers require four squares and
no less.)

In the century before Lagrange, another brilliant
French mathematician had worked on this
problem: Pierre de Fermat (1601–1665).
He classified those natural numbers which could
be expressed as sums of two squares and which
are not squares themselves. The final part of the
proof was completed by Lagrange in 1770. This
article describes how Bachet’s conjecture turned
into a theorem, and gives a (very) brief idea of
Lagrange’s proof.

Fig. 1 Arithmetica by Diophantus; source: [6]

Bachet’s conjecture
The origins of the conjecture lie in the work of
Diophantus, a third century AD mathematician
from Alexandria (Egypt), who was the first to
introduce notation in algebra. He wrote a book
called Arithmetica (see Figure 1) which had a
collection of problems based on what are now
called Diophantine equations. These equations
differed from one another only marginally, but a
new trick had to be used to solve each one.
A significant feature of the problems is their focus
on solutions which are rational numbers. Here is an
example; it shows the level of sophistication of the
problems: Diophantus asks for an expression for
13 as the sum of two rational squares each
exceeding 6, and gives the following as an
answer:

13 = 66049
10201

+ 66564
10201

=
(
257
101

)2

+
(
258
101

)2

.

Diophantus was able to solve the equations by
making clever substitutions so he had to deal with
simpler equations. The sophistication of his
approach justifies the title he is sometimes given,
‘Father of Modern Algebra’.

In 1621, Bachet (Claude Gaspard Bachet de
Méziriac, to give him his full name), a French
mathematician, linguist and poet, translated
Arithmetica from Greek into Latin. While doing
so, he was led to claim (or perhaps to affirm the
claim made by Diophantus) that every natural
number can be written as a sum of at most four
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Fig. 2 Claude Gaspard Bachet de Méziriac (1581–1638);

source: [7]

squares. This therefore came to be called Bachet’s
conjecture.

Fermat’s contribution: the two squares
theorem
Fermat was a lawyer by profession, but made
numerous important contributions to
mathematics, in fields such as probability theory,
coordinate geometry, maxima-minima, optics and
number theory. He often stated theorems without
giving proofs. He studied Bachet’s translation of
Diophantus and worked on its problems. One of
his remarkable claims, made in the margin of one
of Bachet’s books, was that the equation
an + bn = cn has no solutions in positive integers
a, b, c, n if n > 2. (See [1] for a review of the book
[5] by Simon Singh which gives an account of this
story.) An important result that Fermat found—
which he did prove— had to do with natural
numbers which can be written as sums of two
squares. He had discovered a result now known as
Fermat’s two squares theorem.

The theorem says that an odd prime p can be
expressed as a sum of two squares if and only if it
leaves remainder 1 when divided by 4. For
example: the primes 5, 13 and 17 can be written as
sums of two squares, but 7, 11 and 19 need more
than two squares. (Please check.) This observation
had been made earlier (by Albert Girard, in 1632),
but Fermat was the first to prove it. He announced
the theorem in a letter to Marin Mersenne dated
25 December 1640, and for this reason it is
sometimes called Fermat’s Christmas Theorem.

Fig. 3 Pierre de Fermat (1601–1665); source: [8]

Every natural number can be factored into a
product of primes (in a unique way; this is the
statement of the Fundamental Theorem of
Arithmetic). Suppose that every prime in the
factorization of a natural number N is a sum of
two squares. Is N itself then a sum of two squares?
The answer is yes, and this may be shown by using
an interesting identity known as the Brahmagupta
identity (see [10]) which states that for any
natural number n,

(a2 + nb2)(c2 + nd2)

= (ac− nbd)2 + n(ad+ bc)2

= (ac+ nbd)2 + n(ad− bc)2.

The special case n = 1, which was known to
Diophantus, states the following:

(a2 + b2)(c2 + d2) = (ac− bd)2 + (ad+ bc)2

= (ac+ bd)2 + (ad− bc)2.

It shows that a product of two numbers which are
sums of two squares is itself a sum of two squares.
For example, let a = 2, b = 1, c = 3, d = 2. Then
from the relations

5 = 22 + 12, 13 = 32 + 22

we find, by substitution, two different ways of
writing 5× 13 = 65 as a sum of two squares:

65 = 82 + 12 = 42 + 72.

Fermat’s two squares theorem allows us to find an
equivalent description of the natural numbers

Vol. 1, No. 2, December 2012 | At Right Angles 7



that are sums of two squares. Let N be any natural
number. Write N as k2mwherem is not divisible
by any square number greater than 1. (Thus, k2 is
the largest square divisor of N.) Then N is a sum of
two squares if and only if every prime divisor of m
leaves remainder 1 when divided by 4.We
illustrate this with two examples.

• Consider N = 240 = 42 × 3× 5, for which
k2 = 42 andm = 3× 5. The presence of the ‘3’
shows that this number cannot be written as a
sum of two squares.

• Consider N = 765 = 32 × 5× 17, for which
k2 = 32 andm = 5× 17. The primes which
dividem (namely, 5 and 17) leave remainder 1
under division by 4. And indeed we have two
such representations:
765 = 272 + 62 = 212 + 182.

Lagrange’s proof
It was Joseph Louis Lagrange (1736–1813), a
brilliant Italian-born French mathematician and
astronomer, who first proved the four squares
theorem. Lagrange contributed not only to
mathematics but also physics, specially classical
mechanics. He served as the director of the
Prussian Academy of Sciences for twenty years
and won prizes for solving problems in astronomy
posed by the French Academy of Sciences. A lunar
crater is named after him, and his name appears
amongst 72 names inscribed on the Eiffel tower!
(See [3] and [9].)

We nowmention the main steps in the proof of
Lagrange’s theorem. Ambitious students may
want to complete the proof on their own, using
the lemmas. Crucial to the proof is in an amazing

Fig. 4 Joseph Louis Lagrange (1736–1813); source: [9]

identity for sums of four squares which is much
like the Brahmagupta identity for sums of two
squares. It was discovered by Euler and is called
the four squares identity. It is easy to verify, but
discovering it must have been quite an
achievement! We state it as a lemma and leave its
verification to you.

Lemma 1. For any numbers a, b, c, d and p, q, r, s
we have:

(a2 + b2 + c2 + d2)(p2 + q2 + r2 + s2)

= (a p− b q− c r− d s)2

+ (a q+ b p+ c s− d r)2

+ (a r+ c p+ d q− b s)2

+ (a s+ d p+ b r− c q)2.

The lemma tells us that the product of two
numbers which are expressible as sums of at most
four squares is itself expressible as a sum of at
most four squares. Here is an instance of the
identity: 31 = 52 + 22 + 12 + 12, with
(a, b, c, d) = (5, 2, 1, 1); 71 = 72 + 32 + 32 + 22,
with (p, q, r, s) = (7, 3, 3, 2); 31× 71 = 2201;
and 2201 = 242 + 282 + 212 + 202.

Since every natural number can be written as a
product of primes, Lemma 1 implies that if you
can express each prime number as a sum of at
most four squares, then you can express every
natural number as a sum of at most four squares.
As 2 is a sum of two squares, it only remains to
prove that every odd prime p is a sum of at most
four squares. This can be done by using the
following sequence of lemmas:

Lemma 2. If n is even and is a sum of at most two
squares, then so is n/2.

Lemma 3. If n is even and is a sum of at most four
squares, then so is n/2.

Lemma 4. If p is an odd prime, then there exist
integers a and b and an integer k, 0 < k < p, such
that a2 + b2 + 1 = k p.

Lemma 5. If p is an odd prime and there exists an
integer k1 > 1 such that k1p is a sum of four
squares, then there exists an integer k2 < k1 such
that k2p is a sum of four squares.

8 At Right Angles | Vol. 1, No. 2, December 2012



Of these, Lemmas 2 and 3 are not difficult to
prove. (Hint. Simplify the expression(1
2 (x+y)

)2+ (1
2 (x−y)

)2.) Lemma 4 is proved using
ideas from combinatorics (specifically, a principle
called the ‘pigeon hole principle’). Lemma 5 is the
key step; it is called a descent step, as it allows us
to ‘descend’ from a higher multiple of p to a lower
multiple, and ultimately to p itself. The proofs of
Lemmas 4 and 5 are fairly challenging.

Closing remarks
Lagrange’s theorem led naturally to questions
about writing the natural numbers as sums of
fourth, fifth and higher powers; and this in turn
led to a problem now known asWaring’s problem,
whose full story, spanning more than three

Acknowledgements
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centuries, involves many well known
mathematicians including two from India:
S S Pillai and R Balasubramanian.

In the computer algebra packageMathematica
one can just type a command to get all
decompositions of a natural number as a sum of
squares or higher powers: the command
PowersRepresentations[n, k, p] gives all
representations of n as a sum of k non-negative
p-th powers. A challenging exercise is to write this
program and to get to know the powerful
theorems that lie beneath it. The following
theorem proved by Legendre (1752–1833) turns
out to be handy: A natural number is a sum of three
squares if and only if it is not of the form
4k(8m+ 7).

Anuradha S. Garge did her Ph.D. from Pune University in 2008, on a problem related to the

Waring problem. Currently she is Assistant Professor at the Centre for Excellence in Basic Sciences,

Mumbai. She works in classical algebraicK-theory and commutative algebra. She also has an interest

in Indian classical music. She may be contacted at anuradha@cbs.ac.in.
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Fair Game
What are the odds that the game of chance you are playing is fair? How does
the organizer of a lottery make a profit? How often does a customer win at a
casino? Kamala Mukunda analyzes games of chance and brings great
expectations within reach of an introductory course to probability.

KAMALA MUKUNDA

Many things in life boil down to a game of chance, actually!
Getting insurance, gambling, telling the girl you like that
you like her, buying a lottery ticket, riding a motorcycle

without a helmet . . . all these risky activities have two key things
in common. They have an outcomewhich is usually in terms of
winning or losing something. For example, in gambling one can
win or lose money; or it may be peace of mind. Also, there is a
probability associated with each outcome; this can be calculated
precisely in some cases, and only be estimated in other cases.
Relative frequencies are one way of understanding the meaning
of probability: if an experiment is carried out a large number of
times, then the relative frequency of the occurrence of an event (in
the ‘long run’) may be described as the probability of that event.
An interesting topic in probability is the understanding of ‘games
of chance’, defined broadly. One more useful feature of such
games is that they can be played over and over again, which gives
the idea of a ‘long-run average’ (a useful concept as you will see).

10 At Right Angles | Vol. 1, No. 2, December 2012



Let’s start with a very simple game played
between two friends A and B, using a coin. They
decide that A wins if the outcome is heads, and B
wins if the outcome is tails. Then they both put
10 rupees each in the middle, and toss! If it lands
heads, A gets to keep the 20 rupees, but if it lands
tails, A loses her 10 rupees. If the game is played
only once, one of the friends is certain to be
disappointed and the other one elated! But here’s
a question: assuming they play long enough, is this
game fair to both players? Clearly, yes. Suppose
they toss two coins, and A wins if both are same,
while B wins if both are different. Again, the game
is perfectly fair, because the four outcomes HH,
TT, HT and TT are equiprobable (each of the
outcomes has probability 1/2× 1/2 = 1/4).

In fair games, the probability of winning is the
same for both players. A nice way to formalize this
is to draw a simple table showing the outcomes for
eachplayer,with their associatedprobabilities. For
A, the outcome X could be−10 or+10 as below.

X −10 +10
P(X) 1/2 1/2
X.P(X) −5 +5

The third row is the product of X and P(X), and
when we add these values for all values of X, we
get something called an Expected Value for X, or
E(X). E(X) is the long-run average of a person’s
outcomes over many trials, or in this case, it is the
average of A’s winnings over many, many
repetitions of the same game with B. As you can
see in the example, E(X) is zero! Of course it will
be the same for B. That’s why this is a fair game,
because although on any given game only one of
them can win, in the long run, neither is expected
to win more often than the other.

Another interpretation of E(X) is that each time A
and B play, they each should ‘expect’ to win 0
rupees! Of course no one in her right mind will
really expect the winnings to be 0—we know that
either you will lose 10 rupees or you will win 10
rupees—but this is what ‘expected’means in a
probability course. (By similar reasoning, each
time you roll a die, you expect to get 3.5, even
though you cannot possibly ever get it!)

In an actual run of 100 games, it may happen that
A wins 54 times and B wins 46 times; or A wins

45 times and B wins 55 times; or A wins 60 times
and B wins 40 times; etc. So A may leave the place
with some winnings from B’s pocket, or it may
happen the other way round. That is part of what
is meant by ‘expected value’; we expect both A and
B to win 50 games each, but we also expect some
reasonable variation from that scenario. In this
article, I will not go into the meaning of
‘reasonable variation’ (though it’s certainly
important and interesting), because a great deal of
fun can be had with expected values alone.

Here is an example of an unfair game: A die is
rolled, and A wins if the outcome if less than or
equal to 4, whereas B wins if the outcome is
greater than 4. The table below for B’s winnings
shows why:

X −10 +10
P(X) 4/6 2/6
X.P(X) −20/3 +10/3

On every game, B expects to win
−20/3+ 10/3 = −10/3 = −3.33 rupees, or in
other words he stands to lose each time.

You can see that the key in these tables is to be
able to figure out the probability values, P(X).
Tossing a coin and rolling a die seem to yield
straightforward calculations . . . but you can
quickly make it more difficult. Consider this game:
as before, A and B place 10 rupees each on the
table. A rolls a single die and if she gets a 3 or a 6,
she wins and the game ends. If she does not, B
rolls two dice and if he gets a 6 on either die he
wins. If he gets no 6s, the game is drawn, and they
each take their money back. (See Figure 1.)

Fig. 1
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The table of outcomes for B is below:

X −10 +10 0
P(X) 1/3 11/54 25/54
X.P(X) −10/3 +55/27 0

For B, E(X) = (−10/3+ 55/27) = −1.29 rupees,
so B can expect to lose Rs. 1.29 every time he
plays. If they played 100 times, he could expect to
lose around 129 rupees, give or take a little. You
can make a similar table of outcomes for A, using
the probabilities computed above and you will see
where the 129 rupees is going! To make this a fair
game, we could say that for B to win, he needs to
roll a single die and get an even number
(probability 1/2). Figure 2 shows the tree diagram
for this game; make the tables of outcomes for A
and B to convince yourself that this is now a fair
game.

Fig. 2

A similar game was popular among French
noblemen in the 1600s, the assumption being that
it was a fair game, because it was thought that the
probabilities were equal. They did not know about
tree diagrams then, or how to calculate
probabilities. It was when they noticed that
whoever played in B’s position would come out
the loser in the long run that they wrote to the
mathematician Blaise Pascal, who along with his
friend Pierre de Fermat solved the problem and
invented probability theory in the process. (I’ve
included the problem at the end of this article for
you to solve.)

Now it’s time to introduce a third friend, C. He
joins the fair game A and B are playing in Figure 2,
and says to them, ‘‘If neither of you wins, I’ll take

the 20 rupees!’’ The outcomes have now changed,
as you can see below. In the tree diagram, you
need to replace ‘Draw’with ‘C wins’.

For A and B, E(X) = (−20/3+ 10/3) = −3.33:

X −10 +10
P(X) 2/3 1/3
X.P(X) −20/3 +10/3

For C, E(X) = 0+ 20/3 = 6.67:

X 0 +20
P(X) 2/3 1/3
X.P(X) 0 +20/3

So this seems like an unfair game, one that no A
and B in their right minds would agree to play. But
it is exactly the kind of game you are agreeing to
play when you walk into a casino! (That’s what C
stands for, by the way.)

Of course, the numbers will not be quite so
obviously tilted in favour of C. Instead, you may
place 10 rupees on the table, and stand to win
100. If the probabilities are going to be as in the
table below, then neither the casino nor you are
gaining anything in the long run:

X −10 +90
P(X) 90% 10%
X.P(X) −9.00 +9.00

So they have to create a game only slightly
different from the above, where the probabilities
are more like this for you:

X −10 +90
P(X) 91% 9%
X.P(X) −9.10 +8.10

This ensures that you still feel like playing, but in
the long run you’re quite sure to leave a loser!Your
E(X) of−1 rupee for each time you play may seem
ridiculously small winnings for the casino, but if
many, many people play this game many, many
times, then it translates to big winnings for the
casino (this is their long-run average working
for them). Remember, this includes the fact that
some people will win, ‘‘just by chance’’. Ten
thousand games a day makes 10,000 rupees for
them, and with the profits they can easily afford
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some fine furniture, flashing lights and free food
to make you return for more games!

It’s relatively easy to create a game where the
probabilities turn out as in the above table. The
trick is to make players feel like they really have a
chance to win, and one way is to charge relatively
little to play, and dangle a sufficiently large win
under your nose. Lotteries are like that.
A thousand people buy a one rupee ticket each,
and the winner wins, not a thousand rupees but
900 rupees. The remaining 100 is for the
organizers of the lottery. If I don’t exactly know
howmany tickets are sold and therefore cannot
calculate my probabilities, the ratio 1:900 may
persuade me to buy a ticket. My table of outcomes:

X −1 +899
P(X) 0.999 .001
X.P(X) −0.999 +0.899

E(X) = −0.1.
Sometimes people feel if they buy ten tickets their
chances are better. Let’s see:

X −10 890
P(X) 0.99 0.01
X.P(X) −9.90 +8.90

E(X) = −1.00!Why did this happen? Look at it this
way, if you bought all 1000 tickets, you’d be sure
to win the 900 rupees, and your E(X) would be
−100! There’s always a casino in the background.

A quick look at Insurance Polices
We take a quick look at insurance policies and
why they work. By now the language of tables is
easy for you to follow, and I will use it in an
oversimplified example of a one-year accident
insurance for an individual, freely estimating
probabilities and costs! In the table, X refers to the
money the customer has at the end of a year. It
may be negative (the premium paid to the
insurance company) or positive (the company
paid all costs incurred due to the accident). Let’s
assume the premium is 1000 rupees, and accident
costs come to 100,000 rupees.

X −1000 100, 000− 1000
(the premium) = 99, 000

P(X) (as high as) 0.999 (as low as) 0.001
X.P(X) −999 99

E(X) = −900, which means that every year you
buy insurance you can expect to lose 900 rupees.
You may wonder why anyone would buy an
insurance policy under these conditions. To better
understand this, you should play around with the
table changing the cost and the probability of an
accident (make both numbers larger). You will see
that the expected value quickly jumps to a positive
number. In other words, someone who estimates
the probability of having an accident as relatively
high, and who also imagines the prospect of a
large bill for that accident, is more likely to take
out the insurance policy, because they calculate
their E(X) to be positive!

X −1000 200, 000− 1000
= 199, 000

P(X) 0.99 0.01
X.P(X) −990 1990

However, where is the profit for the insurance
company going to come from, if each customer’s
E(X) is positive? The trick is to adjust the premium
so that the E(X) is a small negative number for
each customer. Insurance companies don’t rely on
imagination and ‘gut feel’ to set premiums. Analysis
of large sets of data on accident statistics and
costs help insurance companies set premiums that
ensure they make a profit, while at the same time
making the customers feel that it is a good deal for
them. For the company, the table of outcomes
looks something like this with each customer.

− accident costs
(say a lakh of + premium

X rupees) amount
P(X) (as low as) 0.01 (as high as) 0.99
X.P(X) −1000 + nearly the

premium amount

E(X) just has to be a positive number; remember
they have many, many customers, so thanks to
long-run averages E(X) for each customer can be
small. Therefore in this simplified example, the
company can set premium at just over 1000 to
make a decent profit and still attract customers.

Many of our daily decisions are in fact the result of
mental ‘calculations’ from tables of outcomes.
Depending on our personality, we assign different
probabilities to different outcome values, and
make our estimates of E(X). Without access to the
kind of actuarial data that an insurance company
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has, our estimates could easily be misleading!
I showmy students who have just obtained a
two-wheeler license the following table of
outcomes for driving without a helmet. And I ask,
is this a fair game, would you like to play it?

X −Life Discomfort of
wearing a helmet

P(X) (as low as) .001 (as high as) 0.999
X.P(X) − depends how

you value your Discomfort of
life wearing a helmet

Problems
1. The game that inspired Pascal and Fermat to
invent probability theory involved rolling a single
die four times, or rolling two dice 24 times. If you
chose the former, you won on getting a six. If you
chose the latter, you won on getting a double six.
Which option should you choose? The prevailing
assumption was that these two were equally likely
to give a win, but their reasoning was wrong. They
thought that since the chance of a six on each roll
is 1/6, on four rolls the chance will be 4/6. They
also reasoned that since the chance of a double six
is 1/36, in 24 throws it will be 24/36, or 4/6
again, and therefore the game is fair. Though their
calculations are wrong, the difference from 50–50
is so slight that it was only upon playing many,
many times that it could be detected. In fact the
game is not fair. Can you do the calculations
correctly?

ANS: The probability of a six with four throws of a
single die is 1− (5/6)4 which exceeds 50% (by
just a small bit), and the probability of a double six
with 24 throws of two dice is 1− (35/36)24 which
is less than 50% (by just a small bit)!
2. A popular game in casinos and statistics
textbooks is roulette. It consists of a spinning disc
with 38 pockets and a ball that can fall into any
one with equal probability. The pockets are
numbered 0, 00 and 1 to 36. The 0 and 00 pockets
are green, half the rest are black and half red (see
the image, taken from
http://www.kanzen.com/genimg/american-
roulette-wheel-0-00-abb.jpg).

Fig. 3

The wheel is spun, and before the ball lands in a
pocket, you can place one of several bets.

• Bet on red (or black), odd (or even; crucially, 0
and 00 are not considered even numbers in
roulette!), a number from 1–18 (or from
19–36). The winnings for all these kinds of bets
are ‘double your money’—you get back what
you paid, plus an equal amount as winnings. Of
course if you lose you forfeit whatever you
staked.

• Bet on a single number; winning gives you what
you staked, plus 35 times that amount.

• Bet on any two consecutive numbers (you
win if the ball lands in either); winning gives
you what you staked, plus 17 times that
amount.

• Bet on any four consecutive numbers (you
win if the ball lands in any of them); winning
gives you what you staked, plus 8 times that
amount.

Make the table of outcomes for a player (or for
the casino) for each of these bets, calculating the
E(X) values. Having done this it will be clear to you
why the bets are arranged as they are. It will also
be clear why there are two pockets numbered 0
and 00!
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Suppose you wanted to set up a casino and
decided to be greedy, offering lower winnings
for each bet. For example, you could say that
betting on a single number gives 20 times

(instead of 35 times) the staked amount as
winnings. As casino manager, your E(X) would
shoot up for that particular bet. But why might
you not do that?

The editors thank Mr Rajveer Sangha of Azim Premji University for preparing the graphics.
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Folding
How does an entertaining pastime such as paper folding evolve into a field of
geometry? Can there be axioms about making creases on paper? Shiv Gaur
talks about the axioms of the ancient but still richly-evolving field of origami,
viewed as a ‘cousin’ of geometry, and then demonstrates its surprising power.

SHIV GAUR

The axiomatic system originated in ancient Greece.
Axioms are ‘‘self-evident’’ truths which do not need proof;
they serve as the starting points and building blocks upon

which a deductive system is based–like Euclidean geometry.
Some choices are available in formulating the axioms, but they
should certainly be consistent as well as independent of one
another; and it is desirable that they be simple (‘user friendly’)
and small in number.

In origami, lines are replaced by creases. The question arises
whether in paper folding too we can have a set of axioms which
govern and tell us what various combinations of points and lines
permit us to do.

In 1992 Humiaki Huzita formulated six operations, wherein a
single crease could be created by aligning one or more
combinations of points and lines on a sheet of paper; these came
to be known as Huzita Axioms. In 2002 a Japanese origamist
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Koshiro Hatori found a single-fold alignment that could not be described in terms of the six axioms, and
this became the basis of the seventh axiom. The seven axioms have become known as theHuzita-Hatori
axioms. Physicist, engineer and origamist Robert Lang proved that these axioms are complete, i.e., there
can be no other way of defining a single fold in origami using alignments of points and lines.

Axiom #01
Given two points P1 and P2, a line can be folded passing through both P1 and P2.

Axiom #02
Given two points P1 and P2, a line can be folded placing P1 onto P2.

Axiom #03
Given two lines L1 and L2, a line can be folded placing L1 onto L2.
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Axiom #04
Given a point P and a line L, a line can be folded passing through P, perpendicular to L.

Axiom #05
Given two points P1 and P2 and a line L, a line can be folded placing P1 onto L and passing through P2.

Axiom #06
Given two points P1 and P2 and two lines L1 and L2, a line can be folded placing P1 onto L1 and placing
P2 onto L2.
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Axiom #07
Given a point P and two lines L1 and L2, a line can be folded placing P onto L1 and perpendicular to L2.

Axiom 6 is essentially about drawing the lines which simultaneously touch two parabolas; as such, it
involves the solution of a cubic equation. Since a cubic equation can have up to three real roots, there can
be up to three such common tangent lines. This means that Axiom 6 allows us to solve cubic equations!
Such a possibility does not exist in regular Euclidean geometry, in which the instruments at our
disposal—straightedge and compass—permit us to draw only straight lines and circles, and these never
give rise to cubic equations. It follows that origami geometry is ‘stronger’ than Euclidean geometry! In
particular, one can solve problems such as angle trisection and doubling of the cube, which are
impossible using straight edge & compass.

As a small exercise, by actual folding of paper or by simulating with any dynamic geometry software, try
experimenting and folding all the possibilities present in Axioms 5 and 6. Specifically one can try these:

1. On a sheet of paper consider one side as L. Mark a point P anywhere on the paper and keep folding L
to P and crease the paper along L. Do this repeatedly (choose different points on L each time you map
P to L). What shape emerges from doing this?

2. Next, repeat this experiment by drawing a circle on the paper, which now represents L, and repeat
the procedure with P first inside and later outside the circle. What do you find?

3. Again, on a sheet of paper consider one side as L. Mark a point P anywhere on the paper. Take a
second point P1 anywhere. Fold P to L and using the resulting crease mark the reflection of point P1.
Choosing different points on line L repeat this procedure again and again. What curve emerges from
the marked points?
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Any dynamic geometry software such as GeoGebra or Geometer’s Sketchpad can simulate the above
mentioned activities with the help of the ‘Trace’ function.

Trisecting an Angle
Now let’s have a look at the steps involved in the trisection of an angle using the above mentioned
axioms. This method is by H. Abe (from ‘‘Trisection of angle by H. Abe’’ (in Japanese) by K. Fusimi, in
Science of Origami, a supplement to Saiensu (the Japanese version of Scientific American), Oct. 1980).
• Step 1: Fold a crease on a square paper creating an angle at the corner (to be trisected).

• Step 2: Make two horizontal creases at A and B by folding twice, so that AB = BC. Here C lies at the
corner of the sheet.
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• Step 3: Fold point A onto the crease of the given angle, and point C onto the bottom crease.

• Step 4: Extend the pre-creased line from B towards the top right corner (dashed line).

• Step 5: Unfold; extend the crease (dashed line) to the bottom left corner. This is one of the trisectors!
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• Step 6: Folding the base to the trisector just found yields the other trisector of the angle.

We have thus drawn the two trisectors. (We leave the proof to you!) Such a construction is not
possible in Euclidean geometry.
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The Fine Art of Euclidean Geometry

Viviani’s Theorem . . .
And A Cousin

‘‘I think it is said that Gauss had ten different proofs for the law of quadratic
reciprocity. Any good theorem should have several proofs, the more the
better. For two reasons: usually, different proofs have different strengths and
weaknesses, and they generalise in different directions— they are not just
repetitions of each other.’’ Sir Michael Atiyah, interview in European
Mathematical Society Newsletter, September 2004.

SHAILESH A SHIRALI

Viviani’s theorem is one of those beautiful results
of elementary geometry that can be found experimentally
even by young children. It is appropriate from a pedagogic

point of view, because it allows us to illustrate what it means to
‘do mathematics’: it gives us the opportunity to find a proof, and
the opportunity to experience the pleasure of generalization.

The theorem is named after Vincenzo Viviani (1622–1703), an
Italian mathematician-scientist and a disciple of Galileo during
the last few years of his (Galileo’s) life. (Readers may recall that
Galileo was under ‘house arrest’ for the last several years of his
life. Viviani was with him during part of that period, and helped
in the compilation of the important book, Discourses and
Mathematical Demonstrations Relating to Two New Sciences.)
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Fig. 1 Statement of Viviani’s theorem, and a possible proof

Here is the statement of the theorem. Let�ABC be
equilateral, and let P be any point in its interior
(Figure 1 (i)). Then: The sum of the distances from
P to the sides of the triangle is a constant. Thus, if
perpendiculars PD, PE, PF are drawn from P to the
sides BC, CA, AB, and their lengths are x, y, z,
respectively, then the sum PD+PE+PF = x+y+z
is the same for all positions of P.

A way of proving the theorem is indicated in
Figure 1 (ii). We draw segments PA, PB and PC
(shown dashed). All we need to do is compute the
area of�ABC in two different ways and study the
resulting expressions; the constancy of x+ y+ z
follows. We discover as well what the ‘constant
value’ is: it equals the altitude of the triangle.
(Which makes sense: think of the different
positions that P can occupy.) We invite you to
complete the proof.

A Geometric Proof
A cardinal rule in the teaching-learning of
mathematics is not to be satisfied with a single
solution or proof— however pretty it is, or
however satisfying! In that spirit we look for other
proofs of Viviani’s theorem. As a part motivator
for this, we note that the proof suggested above,
based on computation of area, is ‘algebraic’. At a
crucial step we factorize an expression and divide
by one term, exploiting the fact that the three
sides have equal length. For this reason we
describe the proof as essentially algebraic, and we
ask: Is there an essentially geometric proof?We
now present such a proof.

In Figure 2 we have drawn a segment B1C1
through P, parallel to side BC (with B1 on side AB,

and C1 on side AC). It is clear that for all positions
of P on B1C1, the distance of P from BC remains the
same. Let us now show that the sum of the
distances from P to sides CA and AB is the same for
all positions of P on B1C1. Accordingly, consider
another point P1 on B1C1, and drop
perpendiculars P1E1 and P1F1 from P1 on AC and
AB.Wemust show that PE+ PF = P1E1 + P1F1.
Drop perpendiculars PQ ⊥ P1F1 and P1R ⊥ PE. In
moving from P to P1, the distance to side AB has
increased by P1Q, while the distance to side AC has
decreased by PR. So we must show that P1Q = PR.

Fig. 2 Proof with a geometric flavour

But this follows readily. Since PQ ⊥ P1Q and
P1R ⊥ PR, points P,Q,R, P1 are concyclic. Further,
PR and P1Q both subtend angles of 60◦ at the
circumference of the circle. Hence they have equal
length. (Note that P Q R P1 is actually an isosceles
trapezium.)
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Fig. 3 Moving from P to Q using movements parallel to

the sides

It follows from this that if Pmoves along a path
parallel to any side, its sum of distances to the
sides remains constant. Since one can move from
any point within the triangle to any other point
through movements parallel to the sides (in fact,
just two such movements are needed; Figure 3
shows how to move from one interior point P to
another one Q via the intermediate point R, using
the path coloured blue), it follows that each point
within the triangle has the same distance sum.

A Proof Using Vectors
It is possible to devise a proof using vectors based
on the following principle. Let PB be a segment
and let � be a line passing through P (see
Figure 4). Let the projection of PB on � be PD.
Then PD = −→PB · u, where u is a unit vector along
the line � (oriented suitably).

Fig. 4 Length as a projection

We apply this to the proof of Viviani’s theorem. Let
P be a point within the equilateral�ABC. Let u, v
andw be unit vectors perpendicular respectively
to the sides BC, CA and AB, and oriented from the
centre O of the triangle towards the midpoints of
the sides (see Figure 5). From symmetry
considerations we see that u+ v+w is zero.
Making use of the ‘projection principle’ noted
above, we infer that

PD = −→PB · u, PE = −→
PC · v, PF = −→

PA ·w.

Fig. 5

Hence we must show that−→PB · u+ −→
PC · v+ −→

PA ·w
has a constant value, independent of P. Let Q be a
second point within the triangle. The distance sum
associated with Q is then−→

QB · u+ −→
QC · v+ −→

QA ·w.
Hence the difference between the two distance
sums is

(
−→PB · u+ −→

PC · v+ −→
PA ·w)

− (
−→
QB · u+ −→

QC · v+ −→
QA ·w)

= (
−→PB − −→

QB) · u+ (
−→
PC − −→

QC) · v
+ (

−→
PA − −→

QA) ·w
= −→
PQ · u+ −→

PQ · v+ −→
PQ ·w

= −→
PQ · (u+ v+w) = 0,

since u+ v+w is zero. Hence the difference
between the distance sums is 0, which means that
the distance sums associated with P and Q are the
same. Since this relation is true for any twopointsP
andQ, it follows that the distance sum is a constant.

A Cousin of Viviani’s Theorem
The clinching condition in the above proof is the
fact that u+ v+w is the zero vector. This simple
observation allows us to find another theorem
which looks much like Viviani’s theorem but is
different from it. We shall call it a ‘cousin’ of
Viviani’s theorem.

What the vector proof shows is that if P is a point
within an equilateral�ABC, and u, v,w are any
three fixed unit vectors such that u+ v+w is the
zero vector, then the sum of lengths of the
projections of PA, PB, PC on u, v,w (respectively)
will be a constant for all such points P. (The
reason for this claim should be clear.)
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But we get infinitely many theorems from this
statement, because we can choose the three unit
vectors u, v,w in infinitely many ways! All we
need to ensure is that their (vector) sum is zero.
Here is one possibility: Let u, v,w be unit vectors
along the directions

−→
AB,

−→
BC,

−→
CA respectively. It is

obvious that the sum of these three unit vectors is
zero (see Figure 6). This gives rise to the following
theorem.

Theorem. Let�ABC be equilateral, and let P be a
point in its interior. Let perpendiculars PD, PE, PF
be dropped to BC, CA, AB respectively. Then
BD+ CE+ AF has the same value for all
positions of P.

It is easy to deduce what the constant value of
BD+CE+AFmust be. Let P lie at the circumcentre
of�ABC; then BD = CE = AF = a/2 where a is the
side of the triangle. Hence an equivalent claim is:
BD+ CE+ AF = 3a/2 for all positions of P.

This yields yet another form of the claim! For, if
BD+ CE+ AF = 3a/2, then we also have
CD+ BF+ AE = 3a/2. So: BD+ CE+ AF =
CD+ BF+ AE for all positions of P. We give an
alternate proof of this claim, based on the
Pythagorean theorem.

Since PB2 = PD2 + BD2 and similarly for PC2 and
PA2, we have: PB2 − PC2 = BD2 − CD2 =
(BD− CD) · (BD+ CD) = a(BD− CD).

Fig. 6 A new theorem, somewhat like Viviani’s theorem

We have similar relations for PC2 − PA2 and
PA2 − PB2. Hence:

⎧⎨
⎩
PB2 − PC2 = a(BD− CD),

PC2 − PA2 = a(CE− EA),

PA2 − PB2 = a(AF− FB).

The sum of the three quantities on the left is 0, and
so therefore is the sum of the quantities on the
right. It follows that

(BD− CD) + (CE− EA) + (AF− FB) = 0,

and hence that

BD+ CE+ AF = CD+ BF+ AE.

It follows that

BD+ CE+ AF = 3a/2 = CD+ BF+ AE.

Questions to Ponder
In closing we leave the reader some questions to ponder.

Q1: Viviani’s theorem requires that P be a point within the equilateral�ABC. Can amodification be found in the statement
of the theorem which will make it applicable to points outside the triangle?

Q2: Can there be an ‘inequality form’ of Viviani’s theorem (presumably, for triangles which are not equilateral)?
Q3: What generalization can be made of Viviani’s theorem to polygons with a larger number of sides? Is there a class of

polygons with the property that the sum of the distances from an interior point to the sides of the polygon is the same
for every point? (It seems highly plausible that the property will be true for any regular polygon. Could it extend to
polygons which are not regular?)
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Complete Family of
Pythagorean Triples
From Random to Systematic Generation

In Part I of this article we presented a few methods for generating Primitive
Pythagorean Triples (PPTs). You will recall that they were all ‘piece meal’ in
character. Now we present two more approaches which offer complete
solutions to the PPT problem. Both are based on straightforward reasoning
and simple algebra. And no PPT is left out: we capture the complete family in
each case.

C ⊗ MαC

At the start we recall the definition: a Pythagorean triple is
a triple (a, b, c) of positive integers such that a2 + b2 = c2.
The triple is called ‘primitive’ if a, b, c have no common

divisor exceeding 1; we call such a triple a ‘Primitive
Pythagorean Triple’ (PPT for short). For example, (5, 12, 13) is a
PPT, while (6, 8, 10) is a Pythagorean triple which is not a PPT.

Remark.Wemake the following number theoretic observation
about PTs which are not PPTs. If two numbers in a PT share a
common factor exceeding 1, this factor divides the third number as
well. For example, (9, 12, 15) is a PT, and its numbers 12 and 15
share the factor 3; this factor divides 9 as well. To see why this
claim of divisibility will always be true, suppose that in the PT
(a, b, c), both b and c are divisible by some integer k. Then k2
divides both b2 and c2, hence k2 divides a2, since c2 − b2 = a2;
hence k divides a as well. This logic works no matter which two
of a, b, c are divisible by a common factor. Hence, to check that a
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PT is aPPT, it is enough topick any twoof its entries
and check that they are coprime; the nice thing is
that it does not matter which two entries we
pick!

Generating the Full Family of PPTs By
Solving Equations
Let (a, b, c) represent a PPT. We write its defining
relation a2 + b2 = c2 in the form

(a
c

)2
+

(
b
c

)2

= 1. (1)

Let u = a/c and v = b/c. Then u and v are positive
rational numbers, and they have the same
denominator (because no ‘cancellation’ can take
place in either of the two fractions). Also, they lie
between 0 and 1, and they satisfy the equation
u2 + v2 = 1.

To solve this equation we transpose the terms and
write it in the form u2 = 1− v2. In this form it
immediately looks more familiar, because we are
able to make use of the well known ‘difference of
two squares’ factor formula. Write the equation
u2 = 1− v2 as

u · u = (1− v) · (1+ v), ∴ u
1− v

= 1+ v
u

. (2)

Denote the common value of u/(1− v) and
(1+ v)/u by t (in terms of the original quantities
a, b, cwe have t = a/(c− b); note that t is a
positive rational number, for it is the ratio of two
positive rational numbers):

u
1− v

= t,
1+ v
u

= t. (3)

By cross-multiplication and transposing terms, we
obtain a pair of simultaneous equations in u and v:

{
u+ tv = t,
tu− v = 1. (4)

Treating t as a fixed quantity, we solve for u and v
in the usual way (we do not give the steps here;
please check the answerwehavegiven);weobtain:

u = 2t
t2 + 1

, v = t2 − 1
t2 + 1

. (5)

Recall that t is a positive rational number. Let
t = m/nwherem and n are positive, coprime

integers. Since u = a/c and v = b/cwe get, by
substitution:

a
c

= 2 ·m/n(
m2/n2

) + 1
= 2m n
m2 + n2

,

b
c

=
(
m2/n2

) − 1(
m2/n2

) + 1
= m2 − n2

m2 + n2
.

Hence:

a : b : c = 2m n : m2 − n2 : m2 + n2. (6)

It is easy to verify that if a, b, c satisfy these ratios
then they satisfy the Pythagorean relation, because
of the identity (2m n)2 + (m2 − n2)2 = (m2 + n2)2.
So: (2m n, m2 − n2, m2 + n2) is a PT for every pair
of coprime integers m, n with m > n.

Note that we only said ‘PT’, not ‘PPT’ — it could
happen that the triple is a PT but not a PPT. Here
are some examples of both kinds:

• (m, n) = (8, 3) yields the triple (48, 55, 73)
which is a PPT.

• (m, n) = (7, 3) yields the triple (42, 40, 58)
which is not a PPT as all its numbers are even.
But note that we can recover a PPT from it by
dividing all the numbers by their gcd which
happens to be 2; we get the PPT (21, 20, 29).

• (m, n) = (5, 3) yields the triple (30, 16, 34)
which is not a PPT but yields the PPT
(15, 8, 17) on division by 2.

So (m, n) = (8, 3) yields a PPT whereas
(m, n) = (7, 3) or (5, 3) do not. If you experiment
with various coprime pairs (m, n), and we urge
you to do so, you will find that you get a PPT
precisely when m and n have opposite parity (i.e.,
when one of them is odd, and the other one even;
this may be expressed compactly by writing:
m+ n is odd). Please experiment on your own and
confirm this finding.

How do we prove this? The condition is clearly
needed; for, ifm, n have the same parity (which
means in our context that they are both odd, as
they are supposed to be coprime and so cannot
both be even), then 2m n,m2 − n2 andm2 + n2 will
all be even numbers.

We now prove that ifm and n are coprime and
have opposite parity, then 2m n,m2 − n2 and
m2 + n2 are coprime. For this, it is enough if we
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show thatm2 − n2 andm2 + n2 are coprime.
(Recall the remark made at the start to see why.)
Let k denote the gcd ofm2 − n2 andm2 + n2. We
present the proof that k = 1 as follows.

• Sincem and n are coprime, so too arem2 and n2.
• Since k divides both the numbersm2 − n2 and
m2 + n2, it divides their sum (which is 2m2) as
well as their difference (which is 2n2); so k
divides both 2m2 and 2n2.

• Sincem and n have opposite parity,m2 and n2
have opposite parity. Hencem2 + n2 and
m2 − n2 are odd, and k, being their gcd, is odd.

• Since k divides 2m2 and 2n2, and k is odd, it
must be that k divides bothm2 and n2.

• Butm2 and n2 are coprime. Hence k = 1.

Thusm2 − n2 andm2 + n2 are coprime, as claimed,
and the PT is a PPT. We conclude: If m, n are
positive coprime integers of opposite parity, and

a = 2m n, b = m2 − n2, c = m2 + n2, (7)

then (a, b, c) is a PPT. Table 1 lists some PPTs
along with their (m, n) pairs.

A stronger claim
We can make a stronger statement: The above
scheme generates every possible PPT (a, b, c) in
which a is even and b, c are odd. Let us show why.

Let (a, b, c) be a PPT in which a is even, and b, c
are odd. Let the fraction t = a/(c− b) be written
in its simplest form asm/n (som, n are coprime).
Working as shown above, we find that
a : b : c = 2m n : m2 − n2 : m2 + n2. We now show
thatm, n have opposite parity. Suppose thatm, n
are both odd (obviously, they cannot both be
even). Then 2m n andm2 + n2 are both of the form
2× an odd number, whereasm2 − n2 is a multiple
of 4. Dividing through by 2we find that it is b rather
than awhich is an even number. However we had
supposed that a is even and not b. Hence it cannot
be thatm, n are both odd. So they must have
opposite parity. But ifm, n are coprime and have
opposite parity, then 2m n,m2 − n2 andm2 + n2

are coprime; we had shown this earlier. Now from
the equalities a : b : c = 2m n : m2 − n2 : m2 + n2

and the fact that a, b, c are coprime as well as
2m n,m2 − n2,m2 + n2, we can conclude that
(a, b, c) = (2m n,m2 − n2,m2 + n2), as required.

Example: Consider the PPT
(a, b, c) = (48, 55, 73). Here
t = a/(c− b) = 48/18 = 8/3; so we takem = 8
and n = 3. Now check that (m, n) = (8, 3)
generates the PPT (48, 55, 73).

A number theoretic approach
To round off this discussion we shall derive the
formula (7) in a completely different way, number
theoretic in flavour. The key principle we use is
the following proposition.

Proposition. If r and s are coprime positive
integers such that rs is a perfect square, then both r
and s are perfect squares.

For example, the product of the coprime numbers
4 and 9 is a perfect square, and each of these
numbers is a perfect square. We invite you to
prove the proposition.

Let (a, b, c) be a PPT in which a is even (and
therefore both b and c are odd). From the relation
a2 + b2 = c2 we get a2 = c2 − b2 = (c+ b)(c− b).
We write this relation as follows:

(a
2

)2
= c+ b

2
· c− b

2
. (8)

Since a, c+ b and c− b are even numbers, the
quantities 1

2a,
1
2 (c+ b) and 1

2 (c− b) are integers.
We claim that 12 (c+ b) and 1

2 (c− b) are coprime.
To see why, suppose that d is a common divisor of
1
2 (c+ b) and 1

2 (c− b); then dmust divide their
sum (= c) as well their difference (= b). Hence d
divides c as well as b. But we know that b and c are
coprime. Hence d = 1, and 1

2 (c+ b) and 1
2 (c− b)

too are coprime.

From (8) we see that the product of the coprime
numbers 1

2 (c+ b) and 1
2 (c− b) is a perfect square.

Hence each of them is a perfect square! Let
1
2 (c+ b) = m2 and 1

2 (c− b) = n2. By addition and
subtraction we get c = m2 + n2 and b = m2 − n2.
From (8) we get a = 2m n. Hence there exist
coprime integersm and n such that
(a, b, c) = (2m n,m2 − n2,m2 + n2).

We illustrate this step with an example. Take the
PPT (a, b, c) = (48, 55, 73) in which a is even, and
b and c are odd, as required. For this PPT we have:
1
2 (c+ b) = 1

2 (73+ 55) = 64 and
1
2 (c− b) = 1

2 (73− 55) = 9. Observe that 12 (c+ b)
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Table 1. A list of some (m, n) pairs and the PPTs they yield.

m n 2m n m2 − n2 m2 + n2

2 1 3 4 5
3 2 12 5 13
4 1 8 15 17
4 3 24 7 25
5 2 20 21 29
5 4 40 9 41
6 1 12 35 37
6 5 60 11 61
7 2 28 45 53
7 4 56 33 65
7 6 84 13 85
8 1 16 63 65
8 3 48 55 73
8 5 80 39 89
8 7 112 15 113

m n 2m n m2 − n2 m2 + n2

9 2 36 77 85
9 4 72 65 97
9 8 144 17 145
10 1 20 99 101
10 3 60 91 109
10 7 140 51 149
10 9 180 19 181
11 2 44 117 125
11 4 88 105 137
11 6 132 85 157
11 8 176 57 185
11 10 220 21 221
12 1 24 143 145
12 5 120 119 169
12 7 168 95 193
12 11 264 23 265

and 1
2 (c− b) are perfect squares. Hence

m = √
64 = 8 and n = √

9 = 3. Please check that
by using these values ofm, n in (7) we get the
same PPT with which we started, (48, 55, 73).

It remains to show thatm, n have opposite parity.
But we leave the task to you.

Remark. The approaches we have presented
above are only two of many different ways of

tackling the Pythagorean equation.
Here are some other directions we could have
taken: (i) the double angle formulas of
trigonometry, (ii) complex numbers,
(iii) coordinate geometry and quadratic equations.
The reassuring thing is that all these different
approaches give exactly the same general result.
We shall come back to some of these approaches
later.

The Community Mathematics Centre (CoMaC) is an outreach sector of the Rishi Valley

Education Centre (AP). It holds workshops in the teaching of mathematics and undertakes preparation

of teaching materials for State Governments, schools and NGOs. CoMaC may be contacted at

comm.math.centre@gmail.com.
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Held every four years, the International Congress of Math-
ematics Education (ICME) is organised under the auspices 
of the International Commission on Mathematics Instruc-

tion (ICMI), started in 1908 as the International Commission on 
the Teaching of Mathematics with this aim: “To make an inquiry 
and publish a report on current trends in the secondary teaching 
of mathematics in various countries” ([1]). Over the years, ICMI 
activities have contributed to the development of a new discipline: 
research in mathematics education.

Every fourth year starting with 1972, ICME has brought together 
math educators, researchers, teachers, policy-makers, students and 
mathematicians to collaborate on issues and challenges of math 
education. The aim is to present trends in math education research 
and the practice of math teaching at all levels. It serves as a meeting 
space for the international math education community, provides 
an opportunity for discussion, debate and the presentation of new 
research and theory. ICME-12, held this year between 8 and 15 July, 
in Seoul, South Korea, was attended by over 4000 people from over 
100 countries. From India, there was a delegation of 25 individuals 
drawn from across the country.

At Right Angles shares first hand accounts of ICME-12 as reported 
by Shreya Khemani and Geetha Venkataraman.

Seoul searching at ICME 12

Close encounters
of the ‘Math ED’ 
kind 

Geetha Venkataraman 
and Shreya Khemani
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Geetha: This was a journey involving many firsts: 
the first ICME I was attending, and the first time 
I was visiting a place as far east as Seoul. This 
essay is not just about mathematics education or 
about visiting Seoul, it is also a collage of impres-
sions of ICME-12: the talks, the Indian National 
Presentation, people and places in Seoul, and 
other vignettes. ICME-12 was held at Coex Mall, a 
huge mall several floors of which were devoted to 
ICME-12. Soon after settling into our accommoda-
tion on July 8, we headed to the Conference venue, 
which turned out to be about 45 minutes away by 
walk and subway. It was soon to become our daily 
routine for the next seven days.

Shreya: Sessions were held in parallel, making it 
very difficult to choose one lecture or event over 
another. There were 7 Plenary Events, 5 Sur-
vey Teams, 78 Regular Lectures, 37 Topic Study 
Groups, 4 National Presentations, 47 Workshop 
Sharing Groups, 17 Discussion Groups and 
reports of various ICMI Studies, and we often 
found ourselves dashing across rooms or across 
floors, trying to catch as many events as possible. 
Most people attached themselves to a single Topic 
Study Group (TSG) of their field of interest. I was a 
part of TSG 7—Teaching and learning of number 
systems and arithmetic—focusing on primary 
education, where I presented a paper (co-authored 
with Jayasree Subramanian) on our work, Tackling 
the Division Algorithm. The study group consisted 
of a core population of around 15 people, while 
others floated in and out. Papers presented dif-
fered greatly in scope and method. Unlike the 
larger events at the Congress, the study group pro-
vided a more intimate atmosphere where thoughts 

and questions could be shared openly. Similar 
concerns, a growing familiarity over the course of 
the week and the small size of the group allowed 
for lively discussions and a meaningful exchange 
of ideas.

Geetha: The journey began in early 2011 when 
plans for the Indian National Presentation (INP) 
at ICME-12 started taking place. India was one of 
several countries that were given the opportunity 
to make a presentation on the state of math educa-
tion in their country. The aim was to cover differ-
ent aspects of math education in India, to criti-
cally review the situation at the different levels: 
primary, middle, secondary and tertiary, through 
the dual lens of curriculum and pedagogy. Several 
regional conferences and one national conference 
later, the INP began to take shape. 

There were many topics and viewpoints that the 
INP planned to represent through different media. 
In addition to a book, audio-visual presentations 
were to be showcased in short clips. A video film 
was to be made and an exhibition organized, and 
all this had to be done with people collaborating 
from far and wide, across India.

With July approaching there were mad deadlines 
that everyone was trying to meet, and bouts of 
panic because of the Air India strike. But despite it 
all, the team arrived in Seoul. The book ([2]) was 
ready, as were individual team members’ presen-
tations ([3]), the video film ([4]) on mathematics 
education was canned in time, and charts, posters 
and display items ([5]) for the exhibition were 
assembled.

Shreya: An interesting feature of an ICME is the 
large number of Workshop Sharing Groups (WSG). 
These are informal small group activities designed 
to “exchange and discuss relevant mathematical 
experiences” ([6]). No formal presentations are 
made; rather, groups are invited to share their 
experiences of a project they have worked on and 
open the floor for discussion. I attended the WSG 
on the Urban Boundaries Project: Mathematics 
and the Struggle for Survival. It described a project 
led by a varied group of individuals (architects, 
biologists, physicists, teachers, math educators) 
working with two communities in the outskirts of 
Lisbon, Portugal — an ancient Portuguese 
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fishing community, and an immigrant population, 
consisting of people from different ethnic groups 
living on agricultural land where settlement is 
deemed illegal. Both communities face problems 
of social inclusion, and the project seeks to address 
their educational needs. Coming from within the 
discipline, one rarely thinks about the relationship 
between mathematics and politics. One thing that 
struck me was the difference in the way that math-
ematicians and math educators view mathemat-
ics. As Lyn Steen observes: “To a mathematician, 
mathematics is singular —a Platonic paradigm in 
which there are . . . unquestionable criteria for dis-
tinguishing right from wrong and true from false. 
But to math educators, 
mathematics is plural. 
Mathematics, among 
other things, offers a 
lens through which one 
can look at the world. 
In math education the 
direction is reversed — 
one looks at mathemat-
ics through the lens of 
the learners [and the 
teachers]” ([7]). I had 
never conceived of 
mathematics as plural. 
Nor had I ever imag-
ined being at a confer-
ence on math educa-
tion where it would be 
relevant to ask about 
the immigration laws of Portugal!

Geetha: An event that left an impression was the 
Regular Lecture by Alan Schoenfeld (Klein Medal 
awardee), How we think: A theory of human de-
cision-making, with a focus on teaching ([8]). The 
Abstract seemed to suggest that the speaker was 
working on a theory that could explain why teach-
ers took particular decisions in class. It seemed to 
apply to any kind of goal-oriented decision making 
activity.

Alan had started his career as a mathematician, 
and a reading of Polya’s How To Solve It ([9]) got 
him thinking about ‘heuristics’ and strategies that 
mathematicians use to solve problems. This led 
him to the obvious question as to whether it is 

possible to teach students to be better problem 
solvers and to enjoy the profound beauty of math-
ematics. From here it was a natural step to turn his 
attention to teachers and teaching. Eventually this 
led to his research on goal-oriented decision mak-
ing of which teaching is an example. The aim was 
to build a theory to help model goal-oriented deci-
sion making tasks like teaching, problem solving, 
cooking or brain surgery, which could explain and 
even predict decisions taken in the classroom by a 
teacher, in the kitchen by a cook, or on an operat-
ing table by a surgeon.

The talk was a sell-out. There was no standing 
space; even the aisles 
in the auditorium were 
packed! Interested 
readers should refer to 
[10] for details. 

Shreya: Both the Ple-
naries and the Regular 
Lectures featured 
prominent scholars 
in the field, providing 
us an opportunity to 
hear at first hand the 
people whose work we 
admire. I particularly 
enjoyed Freudenthal’s 
Work Continues by 
Marja van den Heuvel-
Panhuizen. Her talk 
was about some recent 

projects in elementary mathematics education 
carried out at the Freudenthal Institute (Nether-
lands). In describing each project, she looked back 
to the work of Freudenthal and his collaborators 
on Realistic Mathematics Education (RME) which 
has influenced and inspired math educators and 
researchers around the world ([11]).What I found 
particularly interesting was how she placed each 
project in a larger historical perspective of the 
institute’s history and Freudenthal’s philosophy.

Geetha: One of the plenaries was a panel discus-
sion titled “Mathematics Education in East Asia” 
which focused on the situation in Japan, Korea 
and China. It was well presented, with practiced 
remarks thrown in at various points. For example, 

Hans Freudenthal, a prominent topologist of 
his time, was President of ICMI from 1967 to 
1970, and it was under his initiative that the 
first ICME was launched in 1969. He worked 
extensively for reform in math education 
and wrote widely on the subject. In 1971 the 
Freudenthal Institute was established, with 
Freudenthal as its first Director. At its heart 
was the ‘Wiskobas’ project (Mathematics in 
Primary School) which laid the foundations 
for the development of Realistic Mathemat-
ics Education, an approach rooted firmly in 
Freudenthal’s interpretation of mathematics 
as a ’human activity’.
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there were video clips shown of classroom situ-
ations in USA and China; in the former, students’ 
faces were blurred to protect privacy, whereas 
no such means were adopted for the latter. The 
‘remark’ then was to the effect that education 
was a public enterprise in the East and not about 
individuals.

The presentation seemed to suggest that the cul-
ture and societal practices of the East had resulted 
in a ‘war footing’ with which mathematics educa-
tion is approached. There were statistics present-
ed on the millions of dollars spent by students in 
private coaching, to climb the relentless ladder of 
success in mathematics. (I may mention here that 
while returning each day in the metro, we rou-
tinely met children returning home from various 
coaching classes, as late as 9 pm.) There was an 
attempt to show the contrast between practices in 
the West (USA) and East: between the focus on the 
individual learner in the former, and on the entire 
class in the latter. The fact that many countries of 
the East had done well in international studies on 
math achievement (TIMSS [12], PISA [13]) was 
highlighted.

What struck me later was that they seemed so sure 
that their way of learning and doing mathematics 
was the right way. I wondered if this is actually the 
case, or whether there were other critical voices 
that did not find place in the presentation. Surely, 
if there is one thing that worries so many of us in 
India, particularly when policy decisions are made 
regarding the teaching-learning of mathematics, is 
whether we are on the right path or not.

Of course, we tilted the scales in the other direc-
tion during the INP! Each presentation looked 
closely and critically at some aspect of mathemat-
ics or mathematics education in the country. In 
our desire to acknowledge that there is so much 
yet to be done, we tend to be over-critical. But it 
is important to recognise the many positives that 
have been achieved.

The INP took place on 10 July. It covered a broad 
spectrum of topics: glimpses of history of math-
ematics and math education in India; curriculum 
and pedagogy for primary, middle and secondary 
school mathematics; assessment of math learning; 
math education, nurture and enrichment initia-

tives at the undergraduate level; teacher education 
and development; and research in math education. 
Three short films were shown. The preparation 
that had begun with the creation of NIME 
(National Initiative on Mathematics Education 
([14]) had finally borne fruit. Of course, there 
were some lessons to be learnt as well. We should 
have publicised the INP better and tried to reach 
a larger audience. Our exhibition needed a dedi-
cated team and seemed under-par compared to 
other National exhibitions. But one of the games 
exhibited in the stall — pallankuzhi — proved to 
be a great hit, especially with children. (We learnt 
that variants of this game are played all over the 
world.)

Shreya: The organisers also 
hosted a Math Carnival, filled 
with exhibits and fun activities. 
Visiting teachers and children 
spent hours playing mathemat-
ical games, pondering Escher-
esque tessellations, climbing 
dodecahedrons, and challeng-
ing their friends by rolling the 
Silla Square. It was lovely to see 
so many young people running 
around in the midst  
of a serious academic conference.

On 12 July, participants were taken on excursions 
through the city of Seoul. We walked through 
some historic parts of the city, visited the beauti-
ful Gyeonghuigung palace and the Seoul History 
museum, attended a kimchi cooking class, and 
had a wonderful traditional Korean meal. Seoul is 
a large, striking megapolis, grid like and modern 
in its architecture, and surrounded by mountains. 
The Han River flows through the centre of the 
city, dividing it into two halves and separating the 
Northern, older part of the city from the Southern 
modern metropolis. July is a monsoon month; 
while the temperature and rain feel like Mumbai, 
the temperate vegetation and tall pine trees con-
tradicted and confused what I associate with warm 
rain. We walked around in the evenings to take in 
the sights, sounds and smells. Street markets are 
vibrant and large, and stay open through the night. 
Filled with ingenious kitsch and delicious food, 
the markets come alive at night. The older part of 
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the city still has some of the ancient Hanoks that 
survived the Japanese colonial invasion, and more 
recently the real-estate mafia. Stumbling onto an 
ancient Buddhist temple on a lane just behind a 
50-storey glass building leaves you wondering 
how the ancient and modern co-exist so seam-
lessly in this bizarre and wonderful city. People 
are kind and helpful; from missing a train to help 
you navigate the subway, to walking you to your 
destination when you ask for directions, Korean 
kindness—resonant of a Confucian past—is some-
thing I cannot forget. I was standing one evening 
outside a market place when it began to rain. Two 
young girls came and asked if I had an umbrella. 
When they found out I didn’t, one of them prompt-
ly pulled hers out and handed it to me, got under 
her friend’s umbrella, wished me a good evening 
and waved goodbye! It was difficult to make sense 
of Korea — with the myth of reunification, the 
growth of pop-culture, the abundance of 4G de-

vices and kindness—but I more than enjoyed my 
time in the wonderful city that is Seoul.

On the final day of the Congress, we were treated 
to a captivating performance by the dance troupe 
Noreum Machi that performs a percussion music 
called samulnori.

Geetha: There was also the presentation of the big 
ICMI (International Commission on Mathemati-
cal Instruction) awards: the Felix Klein and Hans 
Freudenthal Medals. “ICMI awards the Felix Klein 
Medal to a person who has shown consistent, and 
outstanding lifetime achievements in mathemat-
ics education research and development, and the 
Hans Freudenthal Medal to a person who has de-
veloped a theoretically well-conceived and highly 
coherent research programme which has had a 
significant impact on the community” ([15]). The 
awardees of the medals for 2009 and 2011 were 
felicitated at the ICME-12 inaugural ceremony. 
The 2009 and 2011 awardees of the Klein medal 
were Gilah Leder (Australia) and Alan Schoenfeld 
(USA), while the Freudenthal medals went to Yves 
Chevallard (France) and Luis Radford (Canada) for 
2009 and 2011 respectively.

Shreya: As we said goodbyes and exchanged email 
IDs, and I walked off into the rain with my newly-
gifted umbrella, I reflected on all I had heard and 
seen. I found myself faced with two questions, one 
pertaining to the relationship of mathematicians 
to math educators; the other, to the relationship of 
theory to practice in the world of math education. 
In his plenary address, “Whither the mathematics 
/ didactics interconnection?” Bernard R. Hodgson 
spoke of the long-standing tradition of eminent 

In the late 19th Century, the great mathematician Felix Klein published an important study of the 
icosahedron. Around the same time, he was busy initiating a reform of secondary mathematics edu-
cation in Germany, focusing in particular on teacher education, to deal with the problem he described 
as the double gap — “the discontinuity between school mathematics and university mathematics and 
the double forgetting of the respective knowledge: first one had to forget school mathematics upon 
beginning one’s university studies and later as a teacher one had to forget university mathematics 
and return to school mathematics.” He believed that ‘the whole sector of mathematics teaching, 
from its very beginnings at elementary school right through to the most advanced level research, 
should be organised as an organic whole’, and that without this view, ‘even the purest scientific 
research would suffer, inasmuch as, by alienating itself from the various and lively cultural devel-
opments going on, it would be condemned to the dryness which afflicts a plant shut up in a cellar 
without sunlight’.
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mathematicians being involved in education, but 
warned of a growing ‘opaqueness’ between educa-
tors and mathematicians. I wondered if Felix Klein 
could have foreseen this drift.

One of the striking things for me about ICME-12 
was how senior researchers, Ph D students, math-
ematicians, school teachers, practitioners and 
people working in the field were all given a com-
mon platform to present their work, raise their 
concerns and talk about issues in mathematics 

education. I remember how, at a conference I once 
attended, a famous mathematician requested for 
a woman mathematician in the room to be asked 
to leave as she was accompanied by her little child 
who made a sound. In contrast, ICME-12 allowed 
so many voices to be heard, so many people to be 
present, so many narratives to be told. For me it 
was a platform that served to include rather than 
exclude.
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Stimulating student learning

Open-Ended 
Questions 
A class-room strategy for promoting 
divergent thinking
Can anything beat the feel-good factor of finding the perfect 

response to a question in the classroom? This article describes 

how giving students the opportunity to explore and study a 

concept through open-ended questions gives them a variety of 

paths to understanding and bursts the myth that the shortest 

road to mathematical success is the ‘right answer’. 

R. Athmaraman

This writer has a mobile phone, which when unlocked, 
displays the question, “How are you today?” This is one 
of the simplest examples of an open-ended question. We 

can think of other such examples, such as: “What did you feel 
after reading this article?”, “How interesting was your mathe-
matics class yesterday?” These are in direct contrast with what 
are known as “closed-ended” questions, such as “What is the 
colour of the silk-sari you purchased yesterday?” “How much 
increment did you receive in your salary?”

For a maths teacher, open-ended questions offer several 
advantages, one of which is that they encourage students to 
speak and express themselves at length, and this is absent in 
traditional teaching. We illustrate this with a small example of a 
question for a 7-year old.
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Teacher A: What is 7 plus 6?  

Learner: 13. 

The question is specific and the respondent has 
simply to state a ‘fact’. The question is straightfor-
ward, and the answer is simple and predictable. 
Teacher A, in fact, indirectly controls the response 
of the learner. This variety of question is closed-
ended. 

Here is teacher B who uses the same fact in a
different way.

Teacher B : Give me two numbers that add
up to 13. 

The question provides for an assortment of cor-
rect and sensible answers. A learner comes out 
with the answer “9+4” and this ignites an admi-
rable discussion with other learners. They enthu-
siastically suggest more pairs of numbers with the 
total 13. The same question will receive a differ-
ent kind of response when asked to a 12-year old. 
The student may then give the combination 
5.6+7.4, or even 2 25

3 + . Often in a situation 
such as this, one can find learners competing with 
one another to exhibit their perception, compre-
hension and awareness. There is a lot of ‘why’ 
and ‘how’ from the novice. The query encour-
ages students to dig into their understanding and 
impressions. The reason is that the question is 
open-ended. It presents a challenging situation 
to the student, who thereby has control over the 
response, quite unlike the situation created by a 
closed-ended question. 

An enterprising teacher will bring into play
adequate number of open ended questions to 
motivate, introduce or clarify concepts. Such 
questions encourage Divergent and Reflective 
Thinking. When they are employed in the math-
ematics class, the instructor can expect a range 
of responses and can thereby make progressive 
cognitive demands on students. They help learn-
ers put their heads together to make sense of 
mathematics.

The learners recognize the defining character-
istics of the underlying concept, discuss various 
ideas, reason mathematically and ready them-
selves to conjecture, invent and solve problems. 

Concepts of mathematics get connected to their 
areas of application. This is a consequence of the 
fact that when learners respond to open-ended 
questions, they look into the background of the 
underlying concept.

By their intrinsic nature, the open-ended ques-
tions are a versatile tool for teachers handling 
any level of mathematics. The modus operandi of 
teacher B, who asked for a pair of numbers with 
a sum of 13, is so strikingly simple that it can be 
adopted at any stage of instruction for any grade. 
Here are some examples:

• Find two numbers whose product is 1.5

• The difference of two fractions is 4/5. What 
could the fractions be?

• Find an algebraic expression which has 
(2x - 3) as a factor.

• Give the measures of a pair of angles that are 
supplementary.

• List two vectors whose scalar product is 10.

• The probability of an event is 2/3; what could 
be the event?

• The sine of an angle is 1/2. Find the angle.

• Provide an instance of a situation where 
L’Hopital’s Rule will be needed.

• Give an example of a non-commutative group.

Observe that the responses to the above questions 
demand not only the comprehension of concepts 
but also a command of the processes and skills 
for applying and manipulating them. Additionally 
they train the learner’s mind to logically justify his 
or her viewpoint and the solution. This remark-
able advantage makes the open-ended questions 
superior to other varieties.

Teachers are quite familiar with the technique of 
asking traditional type of closed-ended questions 
such as “Find the LCM of 12 and 15”, “What is the 
arithmetic mean of 5, 13, 26 and 103”, etc. With a 
little more planning and innovation, one can ‘cre-
ate’ quite a variety of open-ended questions just 
by slightly altering the traditional presentation. 
Let us list some examples:

Here are some more examples:
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Closed-Ended Open-Ended

Add the first three natural numbers which are not 
multiples of 3.

The sum of three natural numbers, none of which 
is a multiple of 3, is 20. What are the numbers?

What is the HCF of 24 and 36?
Can 6 be the HCF of 24 and some number n? Can 7 
be the HCF of  24 and some number n?

How many lines of symmetry does a trapezium 
have?

Give an example for a quadrilateral that has no 
line of symmetry.

The perimeter of a rectangle is 28 cm and its 
length is 8 cm. Find its area.

The perimeter of a rectangle is 28 cm. What might 
be its area?

Round 23.45 to the nearest tenth.
What number when rounded to the nearest tenth 
will give 23.5? Substantiate your solution.

Which is bigger, 
3

1 or 
3

1
2

c m ?
Can the square of a number be smaller than the 
number itself? Justify your answer.

Draw a rectangle and the middle lines of its sides. 
Then colour 75% of it in red.

Draw a rectangle and colour 75% of the rectangle. 
Do you get a unique answer? Explain.

Draw a triangle whose sides are 5 cm, 6 cm and 7 
cm in length.

Two of the sides of a triangle are 5 cm and 6 cm 
long. Draw the triangle. Argue how your construc-
tion is appropriate.

What is the shape of a manhole cover?
Why are manhole covers circular? List a few 
objects or tools around you whose shapes directly 
relate to their uses. 

State the line of symmetry of the quadratic func-
tion x2 + 4

Find a quadratic function whose line of symmetry 
is the y axis.

Show that the roots of the quadratic x2 – 9 are 
equidistant from the origin

Find a quadratic function whose roots are equidis-
tant from the origin.

1. For a quadratic function, what is the connec-
tion between the following two properties: 
“Line of symmetry is the y axis” and “Roots 
are equidistant from the origin”? What kinds 
of quadratics have these properties?

2. Let p(x) = x3 – x2 + ax + b. When p(x) is 
divided by x – 2 the remainder is 12. Can a 
and b be found using this information? If not, 
what further information would suffice to 
find a and b?

3. Let A and B be two points in the complex 
plane corresponding to the points 
{ ,i i

i
1

1
–

–
}. Find a complex number z

such that if C is the point corresponding to z,
then ∆ ABC is right angled.

From the examples, one might have noticed the 
following: An open-ended problem may yield mul-
tiple answers. Such a problem, requiring divergent 
thinking, may be solved by many different meth-
ods. There will be a great need for investigative 
and reflective thinking and decision making, to 
justify the process and the product. 

Open-ended questions are not to be confused 
with ‘opening’ questions. Opening questions 
are simply starting points to probe into the 
background knowledge in the topic to be intro-
duced, the past experiences and the recall of the 
learner. They are mostly closed-ended, although 
some starters could be open-ended. However, 
experience tells us that commencing a class with 
open-ended questions can spark mathematical 
communication. 
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A teacher should use a judicious combination of 
closed-ended and open-ended questions. Closed-
ended questions alone may not provide a real 
assessment of instruction. It is necessary for the 
teacher to wait for the responses of the students 

when an open-ended question is asked, and not to 
hurry the student. Without this allowance of time, 
the teacher may miss opportunities to spot learn-
ing difficulties as well as patterns of valid but 
divergent thinking in the learners.
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A math connect across the centuries

Ramanujan and
Pythagoras!
An interesting extract from Ramanujan’s notebooks which makes for a great
classroom exercise in geometry, with a dash of algebra thrown in. An
enterprising teacher could do this proof in stages— starting from showing
students the figure and asking them to prove the theorem; if they can’t,
providing them with enough scaffolding to help them complete the proof.

C ⊗ MαC

What connection could there possibly be between
Ramanujan and Pythagoras, when they lived twenty
five centuries apart? Here is one such: an entry in one

of Ramanujan’s famousNotebooks, about a right angled triangle,
which turns to be a consequence of Pythagoras’s theorem. (See
Remark 1, below, for some information about these
notebooks.)

In the figure we see a right�ABC, with � A = 90◦. An arc is drawn
with C as centre and radius CA, cutting BC at P, and an arc is
drawn with B as centre and radius BA, cutting BC at Q.
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Here is Ramanujan’s claim about this diagram:
PQ2 = 2BP× CQ. See if you can prove it for
yourself, before reading on.

Proof. We have BP = a− b, CQ = a− c, PQ =
b+ c− a. So Ramanujan’s claim is:

(b+ c− a)2 = 2(a− b)(a− c).

We must verify this equality. Expanding the terms
and subtracting the quantity on the right side
from the quantity on the left, we get the
following:

(b+ c− a)2 − 2(a− b)(a− c)

= (a2 + b2 + c2 + 2bc− 2ab− 2ac)

− (2a2 + 2bc− 2ab− 2ac)

= b2 + c2 − a2.

Hence the claim that PQ2 = 2BP× CQ is identical
to the claim that a2 = b2 + c2, which is nothing
but the PT. So Ramanujan’s claim follows from
the PT.

Remark 1. The entry we have described here is
one of the few entries in Ramanujan’s Notebooks
that deal with geometry. Most of the entries deal
with topics in algebra and trigonometry
(identities and systems of equations, continued
fractions), number theory (properties of various
functions, solutions of some equations) and
analysis (summations of series). Some entries also
deal with magic squares. Probably these were
written when he was very much younger. You will
find more information on theNotebooks on this
page: http://en.wikipedia.org/wiki/Srinivasa−
Ramanujan.

It is not easy to access these notebooks. You can
view individual pages at: http://www.imsc.res.in/
∼rao/ramanujan/NotebookFirst.htm. And here is
the page where you find the ‘PQ2 = 2BP× CQ’
entry: http://www.imsc.res.in/∼rao/ramanujan/
NoteBooks/NoteBook2/chapterXXI/page11.htm

Remark 2. On studying the entry closely, one
gets the clear impression that Ramanujan first
discovered the underlying algebraic identity, and
then ‘cooked up’ a theorem based on the identity!
For, just below the figure one finds the following
statement:

(a+ b−
√
a2 + b2)2

= 2(
√
a2 + b2 − a)(

√
a2 + b2 − b).

Now this is an algebraic identity— a ‘stand-alone’
relation which does not need to rest on any
geometric result either for its meaning or for it
proof. It can be verified independently. (Please do
try it.) But what ismost interesting is the
statement that appears immediately below this
one in the notebook:

(
3
√

(a+ b)2 − 3
√
a2 − a b+ b2)3

= 3( 3
√
a3 + b3 − a)( 3

√
a3 + b3 − b).

Examining the two relations we see an amazing
resemblance between them. But it is clearly not a
logical connection, for neither relation implies the
other one. What seems plausible is that
Ramanujan found the first relation the ‘ordinary’
way, which (perhaps) others could have done, and
then in a leap of intuition he ‘saw’ the second
relation too. (The relation is far from obvious! Try
proving it.)
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Solve a Geometry
Problem – I
A Three Step Guide
An informal, short guide on solving geometry problems. Ajit Athle describes
some strategies which help in solving geometry problems and demonstrates
how these strategies are used in solving two intriguing problems.

Ajit Athle

Problem solving in geometry poses special difficulties.
Unlike problems in arithmetic or algebra, where one
simply starts ‘at one end’ and proceeds to the ‘other end’ in

a smooth, linear manner, the solution of a geometry problem
often gives rise to a blank feeling. One does not know where to
start! Often the solution requires the drawing of auxiliary lines
and angles, and the figure itself gives no hints. Additionally, one
is faced with the task of spotting relationships between pairs of
triangles, or pairs of angles, disentangling them from a maze of
lines and shapes, and to do so needs a keen eye indeed. This is a
skill which can be difficult to cultivate. In short, problem solving
in geometry is tough!

In this many-part article we share some thoughts on how to
approach this challenging task.
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1. Two problems
We first list two problems and invite the reader to spend time on them before reading on.

(1) Outside a given triangle ABC we have a point D (Figure 1) such that AB = BD = DA, � ACD = 10◦,
� DAC = x◦, and � DBC = (x+ 30)◦. Problem: Find x.

(2) Figure 2 shows a circle with a chord AC; the midpoint of arc AC is D. Let B be any point on arc AC such
that arc AB > arc BC, and let DE be drawn perpendicular to AB, as shown. Prove that AE = EB+ BC.
(This is the famous Broken Chord Theorem, discovered and proved by Archimedes.)

Figure 1 Figure 2

Solutions to the problems

Our approach in general should be to:
(i) Understand the problem well, and record the
given information accurately in a (reasonably
large) diagram which is a copy of the given figure,
making a note of what is required to be
determined or proved; (ii) ascertain whether
there is any hidden information in the problem
statement, and if so, to note this too in the
diagram; (iii) draw conclusions which lead us to
finding the solution to the problem.

Solution to Problem 1. Let us apply the
principles listed above to the problem at hand.
Here we have, AB = BD = DA (see Figure 3). What
does this imply? Well that is clear:�ABD is
equilateral, so � BAD = 60◦. Hence:
� BAC = (60− x)◦ and:

� ABC = (60+ 30+ x)◦ = (90+ x)◦,

� BCA = 180◦ − (60− x)◦ − (90+ x)◦ = 30◦.

We see that � ADB is twice � ACB. Recalling the
result that the angle subtended by the chord of a
circle at the centre is twice the angle subtended at
the circumference, we deduce that if a circle is
drawn with D as centre, passing through A and B,
then the circle passes through C as well.

This means that D is the centre of a circle passing
through points A, B, C. Hence DA = DC, both being

radii of the circumcircle, and so�DAC is isosceles.
It follows that x = 10.

Figure 3

Thus the answer was arrived at in six simple steps
using theorems or properties known to all school
children. There is much beauty in this simplicity.

In a problem like this, one would try and figure
out all angles in the diagram and then see if a
special relationships can be observed which lead
us to some useful inference. One would not know
in advance if any particular angle will be more
useful than any other. But that would vary from
problem to problem, would it not?
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Solution to Problem 2.
(Broken Chord Theorem). In Figure 4, AC is a
chord of a circle; D is the midpoint of arc AC; B
is a point on arc AC such that arc AB > arc BC;
DE ⊥ AB. We must prove that AE = EB+ BC.

Figure 4

As the segments EB and BC are not in the same
line, the problem suggests a natural construction:
Extend AB to F such that BF = BC. We now need to
prove thatAE = EF; i.e., thatE is themidpoint ofAF.

Let � BFC = x; then � BCF = x since BC = BF by our
construction. Hence � CBA = 2x, implying that
� CDA = 2x (angles in the same segment). Next,
note that D lies on the perpendicular bisector of

AC (since D is the midpoint of arc AC), and that AC
subtends an angle of 2x at Dwhile it subtends an
angle of x at F. We infer that D is the circumcentre
of the circle passing through points A, C, F. And
since DE is perpendicular to AF, it follows that E is
the midpoint of AF, which is what we had set out
to prove after our construction.

Note how the construction suggests itself and how
easy the proof is once the auxiliary lines are drawn.

Closing remarks

‘Problem Solving’means engaging in a task for
which the solution method is not known in
advance. In order to find a solution, one must
draw on one’s knowledge, and through this
process, one develops newmathematical
understanding. Solving problems is not only a goal
of learning mathematics but also a major means of
doing so. When one arrives at the correct solution
there is naturally a great deal of satisfaction and
sense of self-confidence which gets generated.
And that, surely, is one of the things that any
teacher is trying to inculcate in a
student.

We shall present and solve more such problems in
future editions of this column.

Ajit Athle completed his B.Tech from IIT Mumbai in 1972 and his M.S. in Industrial Engineering

from the University of S. California (USA). He then worked as a production engineer at Crompton

Greaves and subsequently as a manufacturer of electric motors and a marketing executive. He was

engaged in the manufacture and sale of grandfather clocks until he retired. He may be contacted at

ajitathle@gmail.com.
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Inductive and deductive methods are emphasised in the 
teacher education (B.Ed.) curriculum, in ‘methods of teach-
ing mathematics’. I taught the method of induction pas-

sionately during my stint as a teacher educator and witnessed 
many lessons of mathematics taught by student teachers. It 
was employed by our student teachers whenever they dealt 
with generalisations and, on occasion, it led to the develop-
ment of formulae. 

How is ‘inductive thinking’ used in the teaching of mathemat-
ics? Typically a teacher provides specific instances one by one, 
asks children to observe and note the pattern, and to extend 
this pattern to unknown cases; this leads to a generalisation. 
For example, if the teacher were teaching the laws of indices, 
she would take up the following (or similar) examples, repeat-
edly ask questions, elicit responses from the students, collate 
responses on the black board systematically, and thus arrive at 
the law.

Pitfalls in …

The Method 
of Induction
The perils of teaching by example
Constructive teaching encourages students to recognise patterns 

and build appropriate theory with its roots in conjecture. What 

are the dangers in this method? What precautions should the 

teacher take to avoid conveying the impression that a claim is 

true simply because it has been observed to be true in all the 

examples considered?

Arun Naik
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This is the crux of the approach. At first sight, it 
looks like a great way of helping children explore 
generalisation in mathematics. Just by working 
through a few specific examples, the children are 
able to generalise without the teacher explaining 
the law! The students discover the rule! 

While working as a teacher educator, my focus re-
mained only on the variety of examples the teacher 
gave the students to examine and the space s/he 
created for students to look for patterns, hypoth-
esize and arrive at a general form by systematic 
questioning. I enjoyed watching students come up 
with hypotheses and I was blissfully unaware of 
the boundaries that underlie the method.  

A few years down the line, as I started thinking 
about the method, doubts emerged in my mind. 
Is this really a discovery by the student? Is there 
not a need for proof after we arrive at generalisa-
tion? Is this proof at all? This article brings 
together my thoughts on the topic.

What is ‘inductive thinking’?
‘Inductive thinking’ is what we routinely do in dai-
ly life, without realising it or naming it as such. We 
meet four people from country X who love spicy 
food and conclude, “All people from country X love 
spicy food.” Or we meet five people from country 
Z who enjoy dancing and conclude, “All people 
from country Z love to dance.” In general, we 
examine a number of particular cases and based 
on the observations we arrive at a ‘generalisation’. 
If we see something that works several times in a 
row, we’re convinced that it works forever. As the 
confirming instances pile up, the conclusion gets 
strengthened.

While the ability to generalise is an inherent and 
vital ability of the human brain and underpins 
much of what we do - indeed, the entire scien-
tific enterprise has such thinking at its roots - an 
uncritical acceptance of its results can be poten-

tially damaging; and this is as true in all spheres, 
whether mathematics or science or life as a whole. 
Here are two instances which show the relevance 
of this comment to mathematics. 

Division of a circle into regions 
Consider a circle with n points on it. How many 
regions will the circle be divided into if each pair of 
points is connected with a chord? (Assume that no 
two chords are parallel to each other, and no three 
chords meet in a point.) 

By looking at the examples (Figure 1), most of us 
would be convinced that with 6 points there will 
be 32 regions. Our guess is that the number of 
regions when n points are connected is 2n−1; but 
this is only a guess. We looked at a few examples, 
found it true for the specific instances and now 
believe it works for all unexamined cases. There 
is no logic to explain why we believe it to be that 
way other than “it is true for the cases we have 
verified”. We may think we have established
something, but we haven’t. 

To test the conjecture we need to examine all pos-
sible cases. In the above example, if we go ahead 
and experiment with joining 6 points, we find that 
there aren’t 32 regions! This proves that our con-
jecture is wrong.

FIGURE 1. Sometimes a sequence can mislead us. . .

23 × 24 2 × 2 × 2 × 2 × 2 × 2 × 2 27 23+4

34 × 35 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 × 3 39 34+5

0.53 × 0.52 0.5 × 0.5 × 0.5 × 0.5 × 0.5 0.55 0.53+2

a4 × 2 a × a × a × a × a × a a6 a4+2

y5 × y2 y7

bm × bn

2 points

2 regions

4 points

8 regions

3 points

4 regions

5 points

16 regions
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A prime generator 
Here is another example. One might conjecture 
that n2 − n + 41 is prime for all natural numbers n, 
and the evidence is persuasive:

 y If n = 1 then n2 − n + 41 = 41 is prime.

 y If n = 2 then n2 − n + 41 = 43 is prime.

 y If n = 3 then n2 − n + 41 = 47 is prime.

Even if one continues the experiment till n = 40 
one would not find any evidence that the conjec-
ture is false. But it is easy to see that the statement 
cannot be true in general, for when n = 41, the 
expression equals 412 which is not prime. So by 
finding a example which does not fit the pattern, 
we have proved the conjecture wrong.

Notion of a counterexample
Inductive arguments are suggestive: the evidence 
seems to support the conclusion, but there is no 
guarantee of the accuracy of that conclusion. If one 
wishes to prove a statement in mathematics, it is 
clearly not sufficient to do experiments and make 
observations; for a conjecture cannot be proved 
by example. On the other hand, one can disprove 
a conjecture by finding an example that ‘does not 
fit’ the pattern suggested by the conjecture. Even 
one such example is enough to destroy a conjec-
ture. Such an example, which goes ‘counter’ to the 
conjecture, is called a counterexample. In the prime 
generator conjecture, n = 41 is a counterexample. 
(The reader may enjoy searching for more such 
counterexamples for this particular claim.)

But what if the statement is true? 
What happens if a statement is actually true  
and we are searching for a proof? We know 
that evidence alone is insufficient to prove the 
statement, and we also know that a counterexam-
ple is enough to disprove it. But if the statement 
is true then one will not find a counterexample 
at all!

For example, take the claim that 
1 + 3 + 5 + ... + (2n − 1) = n2 for all natural numbers 
n.  We will certainly not find a counterexample, 
because the claim happens to be true.

A more substantive example of this phenomenon 
is provided by the claim of Fermat (1601–1665): 
if n is an integer greater than 2, the equation
xn +yn = zn has no solution in positive integers.
Attempts to find a counterexample would not 
yield anything, because (as we now know) the 
statement is true.

Thus, experimentation with a few examples as a 
method of settling a conjecture does not always 
work. Then how do we proceed? Is there a way 
out? Deductive proof is called for, and a powerful 
kind of deductive proof is mathematical induction.

Proof by Mathematical Induction
Mathematics distinguishes itself from other 
disciplines in its structure and its internal consis-
tency. It is built on axioms and postulates, which 
are self-evident truths and accepted without proof. 
All theorems, principles and generalisations in 
mathematics are derived and proved based on 
these. The large-scale structure of a proof by 
mathematical induction is simple: 

 y Prove the theorem for the base case, say n = 1.

 y Prove that if the theorem is assumed to be 
true for any value of n, then it must also be 
true for the next higher value of n. This step 
is crucial; it must work for any arbitrary n. 

 y Connect steps 1 and 2: deduce that since 
the theorem is true for the known case (say 
n = 1), it will be true for the next case (n = 2), 
therefore for the next case (n = 3), and so on, 
for all positive integers n.

Despite its name, ‘mathematical induction’ is 
another form of deduction. It has similarities to 
induction in that it generalises to an infinite class 
from a small sample. And it is possible to execute 
because of the logical links between the successive 
unexamined cases. 

Induction is one among many approaches that 
may be used to prove a statement. It would be 
rare to find a statement for which an alternate 
proof is not possible. For example, consider the 
identity 1 + 3 + 5 + ... + (2n − 1) = n2. This has an 
easy inductive proof based on the identity 
n2 + (2n + 1) = (n + 1)2, and this in turn translates 
into an elegant ‘proof without words’. 
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But it can also be proved by inverting the order of 
the summands: 

and adding the two collections of summands ‘ver-
tically’. Each vertical pair of numbers has sum 2n, 
so the two rows together have sum n × 2n = 2n2. 
Hence each row has sum n2. Note that this proof is 
not based on the principle of induction. 

It is an instructive exercise to compile more such 
pairs of inductive and non-inductive proofs. 

Conclusion 
Inductive reasoning involves guessing general 
patterns from observed data. In science (or in 
life as a whole), such guesses remain merely 
conjectures, with varying degrees of probability 
of correctness. In mathematics, however, certain 
conjectures can be proved by the technique called 
‘mathematical induction’. This technique is not 
‘induction’ in the usual sense of the word; rather, 
it is a method for proving conjectures that have 
been arrived at by induction or some other route.
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A rare example

A Surprising Fact about
Triangles with a
60 degree Angle
Is the converse of a statement always true?

Ever posed this question to a class and then scanned your memory for good
examples to clinch your argument? Here is one you could use.

C ⊗ MαC

In the study of triangle geometry we get used to various pairsof theorems about isosceles triangles. Here are a few such
pairs of statements, all with reference to a triangle ABC. Note

their common element: the words ‘and conversely’.

(1) ‘‘If AB = AC then � B = � C; and conversely.’’ (That is, if
� B = � C then AB = AC.)

(2) ‘‘If AB = AC then the medians from B and C have equal
length; and conversely.’’

(3) ‘‘If AB = AC then the altitudes from B and C have equal
length; and conversely.’’

But occasionally we come across statements that go counter to
this pattern; that is, the ‘and conversely’ fails. Here is one such.
Given a�ABC, let the internal bisectors of � B and � Cmeet each
other at I (the incentre of the triangle), and let themmeet the
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Fig. 1

Fig. 2

opposite sides (AC and AB) at Q and R respectively. For this configuration the following is true and easy
to prove: If AB = AC, then IQ = IR (see Figure 1; the proof is given alongside).

Having seen so many statements about isosceles triangles of the form ‘‘If p then q’’ in which the
propositions p and q can exchange places without any loss, we may now guess the following
‘proposition’: If IQ = IR, then AB = AC. But this turns out to be false!

What might a triangle look like in which IQ = IR but AB �= AC? To produce such a triangle we use a
standard theorem in circle geometry: Chords of a circle which subtend equal angles at a point on the
circumference of the circle have equal length.

Suppose that quadrilateral ARIQ is cyclic (Figure 1). Since � IAR = A/2 = � IAQ, chords IR and IQ subtend
equal angles at A; hence they have equal length. Therefore: If points A, R, I, Q are concyclic, then IQ = IR.
(See Figure 2.)

Under what conditions will A, R, I, Q be concyclic? It is known that � BIC = 90◦ + A/2. Hence
� QIR = 90◦ + A/2. Now a quadrilateral is cyclic if and only if the sum of each pair of opposite angles is
180◦. Hence ARIQ is cyclic if and only if A+ 90◦ + A/2 = 180◦, which yields A = 60◦. So: If � A = 60◦ then
IQ = IR. And this holds regardless of the relation between sides AB and AC! Hence from ‘IQ = IR’we
cannot conclude that AB = AC. What we can conclude is this: If IQ = IR, then either AB = AC, or
� A = 60◦, or both.

This may be rewritten as: If IQ = IR, then either AB = AC, or ARIQ is cyclic, or both.We prove it in this
form. We use the ‘sine rule’which states that in any triangle, the ratio of the side to the sine of the
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Figure 2 ‘ Losing’ regions, in two different ways

before we are convinced that we have the right
answer (see Figures 3 and 4).

Examining these values, we quickly spot a pattern
(in a Club setting, we will of course coax the
children to do the spotting): we see that 4− 2 = 2,
7− 4 = 3, 11− 7 = 4. The differences between
successive entries appear to advance by 1 each
time. If this pattern persists then we expect that
R(5) − R(4) = 5, and hence that R(5) = 16. Is R(5)
really equal to 11+ 5 = 16? Is R(6) really equal to
16+ 6 = 22? And does the difference pattern
continue? Experiment and find out!

We leave the matter open here, and end by posing
a few questions for further exploration.

Figure 3 The cases n = 1, n = 2 and n = 3

1
2 3

4

5

6
7

89

10
11

Figure 4 R(4) = 11 (Please check that we cannot get more

than 11 regions)

Some questions to ponder . . .

(1) Assuming that the pattern described above
continues, what do we expect will be the value
of R(10)? R(20)?

(2) Assuming that the pattern described above
continues, can we find a simple formula for
R(n)?

(3) We have repeatedly used the phrase ‘‘ . . .

assuming that the pattern persists . . . ’’. But
why should the pattern persist? What
geometric logic can we give for believing that
it will persist? Unless we can give a convincing
answer for this, our answer for question #2
will at best be partial and therefore of limited
value.

(4) Could there be some other way of proving the
formula we find for R(n)?

(5) The sequence R(1), R(2), R(3), R(4), . . . is
defined geometrically, but it may have some
interesting arithmetical properties, which do
not necessarily derive from its geometric
origins. Try exploring some of these
properties.

(6) In what ways can this exploration be
continued? Perhaps with some objects other
than straight lines? Or by venturing into three
dimensions? Or by studying aspects other
than just the number of regions? Find some
ways on your own, and continue the study.
Happy exploring!

We shall continue our exploration of sequences
and related topics in future editions of this column.
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Probability taught visually

The Monty Hall
Problem
A Spreadsheet Simulation
This problem which has had a history of generating controversy is often used
to teach conditional probability. The article explains how repeated trials can
be simulated using the random number generator in Excel, and how the
result can be experimentally verified and then explained.

Jonaki Ghosh

One of the fundamental concepts in statistics is that of
probability. It forms an integral part of most mathematics
curricula at high school level. The topic of probability can

be enlivened using many interesting problems. The related
experiments are, however, time consuming and impractical to
conduct in the classroom. Simulation can be an effective tool for
modeling such experiments. It enables the student to use random
number generators to generate and explore data meaningfully
and, as a result, grasp important probability concepts. This
section discusses a well known problem known as theMonty Hall
problem or the three door problemwhich is based on conditional
probability and lends itself to investigation. Its exploration using
a spreadsheet such as MS Excel can lead to an engaging
classroom activity. It highlights the fact that handheld calculators
enabled by spreadsheet capabilities can enable students to
visualize, explore and discover important concepts without
necessarily getting into the rigor of mathematical derivations.
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Exploring the Monty Hall Problem
Students often find it hard to understand the
concept of conditional probability. This is aptly
highlighted by the Monty Hall Problem (also
referred to as the three door problem) which goes
as follows

You are a contestant in a game showwhere the host
(Monty) asks you to choose one among three doors.
Behind one of the doors is a car (the prize) and
behind the other two are goats. After you select a
door, the host doesn’t open it; instead, he opens one
of the other two doors and reveals a goat (the host,
who knows what’s behind the doors, never reveals
the car). The host then asks you whether you want
to stick to your original choice or you would like to
switch by choosing the other door. The question is
which option is more likely to win you the prize?

This puzzle and its correct solution was published
by Marilyn vos Savant in the Sunday Parade
magazine in the 90s. She claimed that the
contestant should switch because the odds of
winning the car would be 2/3, whereas if one
sticks to the original door, then the odds of
winning would be only 1/3. This solution created
a furor and thousands of readers including
professional mathematicians retorted angrily by
writing that switching cannot matter, since after
one of the goats is revealed, there are two doors
left and the probability of obtaining the car is 1/2.

Figure 1 A tree diagram to explain the Monty Hall problem; the player’s initial choice is door 1.

One wrote: ‘‘As a professional mathematician, I’m
very concerned with the general public’s lack of
mathematical skills. Please help by confessing
your error and, in future, be more
careful.’’

Indeed this problem can lead to an interesting
classroom discussion. The immediate reaction of
most students (like most people) is also that
switching cannot matter and that the probability
of obtaining the car (after Monty opens one of the
doors and reveals a goat) is 1/2. This is however
incorrect. The probability that you will select the
door with the car (and therefore win) is 1/3, and
probability that you will lose is 2/3. If your initial
choice was correct then switching would be
wrong. However if you chose awrong door initially
(the probability of which is 2/3) then switching
would lead you to win (since the host will reveal
the goat behind the other wrong door). Figure 1
shows a tree diagram to explain the problem. Here
it is assumed that the player has chosen
door 1.

The tree diagram shows that the total probability
of winning by switching is 2/3 whereas the
probability of winning by staying with one’s
original choice is 1/3. Theproblemcanbe analyzed
using the concept of conditional probability which
will be described towards the end of the
article.
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Spreadsheet verification in Excel also reveals that
the probabilities of winning by switching are 2/3
and winning by staying is 1/3. In Figure 2 the
experiment has been simulated 100 times with
the assumption that the player’s initial choice is
door 1. The numbers in column A indicate the
door behind which the car is placed. This is done
by randomly generating the integers 1 through 3,
both inclusive. We assume that the player’s initial
choice is door 1 in all the simulations and enter 1
throughout in column B. To get the entries in
column C, we first check whether the entries for A
and B are the same (i.e., the player has selected
door with the car). If so, we generate a random
number between 0 and 1. If the entries of columnA
and B are both equal to 1, that is, the car is behind
door 1 (which is also chosen by the player), then
Monty may open either door 2 or door 3 (with
probability 1/2 each) since he cannot reveal the
car. This is indicated by the random number
between 0 and 1. A random number less than 0.5
indicates that Monty opens door 2 in which case 2
is entered in column C. However, if the random
number is 0.5 or greater, then 3 is entered in
column C indicating Monty’s opening door 3.
These entries in column C are filled using a simple
macro.

In column D we identify the cases where the
player wins by switching. If the entries of

Figure 2 Simulating the Monty Hall problem using Excel.

column A and B are different, then YES appears in
the corresponding cell. Similarly in column E we
identify the cases where the player wins by
staying with his original choice. Thus if the entries
of columns A and B are the same then YES appears
in the corresponding cell. Finally counting the
YES’s in column D reveals the total number of
times the player wins by switching in 100 trials.
Interestingly, this number, on an average turns out
to be around 67. Thus one may conclude that the
probability of winning by stayingwith one’s choice
is around 33% and that by switching is 67%.

Simulation of the Monty Hall Problem on
Excel
The problem can be simulated on Excel by using
the RAND( ), INT( ) and If( ) functions. The steps
of simulation are as follows

Step 1: The first step is to simulate the position of
the car behind one of the three doors. This is done
by generating 100 integers among 1, 2 and 3 in
column A. Enter=INT(3*RAND( )+1) in cell A2
and drag till cell A101. When creating a column of
numbers by dragging, we need to drag the small
box in the lower right hand corner of the cell. 100
randomly generated integers will appear in
column A. These represent with door behind
which the car is placed (See Figure 2).
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Step 2: In this simulation we are assuming that
the player’s choice is door 1. Enter 1 in cell B2 and
drag till B100 or simply double click on the corner
of cell B2.

Step 3: The next step is to simulate the door
opened by Monty. This is done by entering
=IF(A2=1, IF(RAND()<0.5, ‘‘2’’, ‘‘3’’), IF(A2=2,
‘‘3’’, ‘‘2’’)) in cell C2 followed by a double click on
the corner of the cell. This step simulates the door
opened by Monty. If the car is behind door 1 and
the random number generated by RAND() is less
than 0.5 then Monty opens door 2, otherwise he
opens door 3. On the other hand if the car is
behind door 2, then Monty opens door 3 and if the
car is behind door 3, Monty opens door 2.

Step 4: In column D we identify the cases in which
the player wins by switching and in column E we
identify the cases where the player wins by
staying with his original choice. In column D cell
should show ‘YES’ if the players choice is not the
same as the position of the car and ‘NO’ otherwise.
This is done by entering=IF(A2<>B2, ‘‘YES’’,
‘‘NO’’) in cell D2 followed by a double click in the
corner of the same cell. In column E a cell should
indicate ‘YES’ if the player’s choice is the same as
the position of the case and ‘NO’ otherwise. This
can be achieved by entering=IF(A2=B2, ‘‘YES’’,
‘‘NO’’) in E2 followed by a double click in the
corner of the cell.

Figure 3 Simulating the probabilities of winning by switching and staying with one’s choice.

Step 5: Finally we need to count the number of
‘YES’s in columns D and E to find the number of
cases in which the player wins by switching and
staying with his choice respectively. This can be
obtained by entering=COUNTIF(D2:D101,
‘‘YES’’)/100 and=COUNTIF(E2:E101,
‘‘YES’’)/100 respectively in separate cells.

The Monty Hall Problem–An Analysis
using Conditional Probability
Let Ci denote the event that the car is behind door
i. Clearly P(Ci) = 1

3 where i = 1, 2, 3. Also letMij

denote the event that Monty opens door jwhen
the player chooses door i.

P(Mij/Ck) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, if i = j

0, if j = k

1/2, if i = k

1, if i �= k, j �= k

Note that here i denotes the door chosen by the
player, j denotes the door opened by Monty and k
denotes the door behind which the car is
placed.

Now, P
�Mij

ck

� = 0 if i = j, since Monty will never
open the door chosen by the player. Also
P
�Mij

ck

� = 0 if j = k, since Monty will never open the
door which has the car behind it.

58 At Right Angles | Vol. 1, No. 2, December 2012



If the player chooses the door with the car behind
it (that is, i = k), then Monty can open any of the
other two doors with probability 1/2 each, thus
for i = k.

For the case i �= j �= k, that is, the case when the
player chooses a door which does not have the
car behind it, then Monty has no option but to
open the third door (the one which was not
chosen by the player and the one which does not
have the car behind it). Hence P

(Mij

ck

) = 1 for
i �= j �= k.

Now let us compute the probability of the event
M13 that is the event that Monty opens door 3
when the player chooses door 1. Using conditional
probability we have

P(M13) = P(M13 ∩ C1) + P(M13 ∩ C2)
+ P(M13 ∩ C3)

= P(M13/C1)P(C1) + P(M13/C2)

+ P(M13/C3)P(C3)

= 1
2

× 1
3

+ 1× 1
3

+ 0× 1
3

= 1
2

We would now like to compute the probability of
the event C1/M13, that is, the event that the car is
actually behind door 1 given that Monty opens
door 3 when the player chooses door 1. This
would give us the probability of the player
winning the car by staying with his choice.
Similarly wewould like to compute the probability
of the event, that is, the event that car is actually
behind door 2 given that Monty opens door 3
when the player chooses door 1. This would give
us the probability of the player winning the car by
switching. The computations are as
follows

P(C1/M13) = P(M13 ∩ C1)
P(M13)

= P(M13/C1)P(C1)
P(M13)

=
1
2 × 1

3
1
2

= 1
3

P(C3/M13) = P(M13 ∩ C3)
P(M13)

= P(M13/C3)P(C3)
P(M13)

= 0× 1
3

1
2

= 0

P(C2/M13) = 1− {P(C3/M13) + P(C3/M13)}

= 2
3

Thus P
( c1
M13

) = 1
3 indicates that the probability of

the player winning the car by staying with his
choice is 1/3 and P

( c2
M13

= 2
3
)
indicates that the

probability of the player winning the car by
switching is 2/3.

It would be a good exercise to analyse the
problem if the number of doors in the game is
more than 3. Suppose there were 100 doors, you
choose one of them, and Monty then opens 98 of
the other doors, would you switch?

Conclusion
The topic of probability has a plethora of
interesting problems which can be made
accessible to high school students through
spreadsheets. The experiments related to these
problems may be impractical to conduct manually
but simulation can be an effective modeling tool
for imitating such experiments. Microsoft Excel
proves to be a very handy tool for conducting the
explorations and investigations in the classroom.
The Monty Hall Problem discussed in this article
can be conducted with students of grades 9 and 10
without getting into the mathematical derivations.
However in grades 11 and 12 the spreadsheet
verification of the problem can be followed by an
analysis of the underlying concepts which are
rooted in probability theory.

Vol. 1, No. 2, December 2012 | At Right Angles 59





In the last issue of At Right Angles we had noted an observation that Ramanujan had made about the 
number 1729: It is the least positive integer that can be written as the sum of two positive cubes in more 
than one way (namely, as 103 +93 and as 123 +13), and we asked you to find the next integer, after 1729, 
with the same property.

A ‘brute force’ computer assisted search reveals the following such numbers:

 1729  =  93 + 103  =  13 + 123,

 4104 =  93 + 153  =  23 + 163,

 20683  =  193 + 243  =  103 + 273,

 39312  =  153 + 333  =  23 + 343,

 40033  =  163 + 333  =  93 + 343,

 64232  =  263 + 363  =  173 + 393.

We can list more such equalities by scaling: 13832 = 183 + 203 = 23 + 243 (from the entry for 1729). But 
we regard these as uninteresting and do not list them. The numbers with the desired property are seen 
to be: 1729, 4104, 20683, 39312, 40033, 64232, . . . . The next Ramanujan number after 1729 is thus 4104.

Ramanujan’s Solution
Instead of a brute force method, can we not look for approaches that are more worthy of being called 
‘mathematical’?

When we have an equation and we must find integers satisfying it, the equation is referred to as 
a Diophantine equation (after the Greek mathematician Diophantus). Two well known examples: 
(i) the Pythagorean equation a2 = b2 + c2, which gives rise to Pythagorean triples; (ii) the Fermat
equation an = bn + cn (with n > 2). For taxicab numbers the defining equation is a3 + b3 = c3 + d 3.

It turns out that it is possible to solve the equation a3 + b3 = c3 + d 3 in a systematic way. The great
eighteenth century mathematician Euler did so. So did Srinivasa Ramanujan, during the period when 
he was still in India, composing his now-famous notebooks. (This was before he went to England, in 
1914, at the invitation of G H Hardy.) Here are the formulas he found: if u and v are arbitrary integers, 
positive or negative, and

a = 3u2 + 5uv − 5v2,    b = 4u2 − 4uv + 6v2,

c = 5u2 − 5uv − 3v2,    d = 6u2 − 4uv + 4v2,

by 



then a3 +b3 +c3 = d3, identically. This is nearly the same as our equation, except that c has come on the 
‘wrong’ side. Clearly, this can be fixed by a simple change of sign. 

For example, if we put u = 1 and v = −2 we get a = −27, b = 36, c = 3, d = 30, hence: 

(−27)3 + 363 + 33 = 303.

Since each term in this equality is divisible by 3 we may divide it out without losing anything; we get 
(−9)3 +123 +13 = 103, and therefore by exchanging terms: 

123 + 13 = 93 + 103.

Now we see why this identity came so readily to Ramanujan when Hardy mentioned the number 1729; 
he had found it out many years earlier! 

Other (u, v) combinations yield more such nice and non-obvious relations:

 from (u = 1, v = 2), we get 73 + 143 + 173 = 203;

 from (u = 1, v = −3), we get 73 +543 +573 = 703;

 from (u = 2, v = 3), we get 33 +363 +373 = 463;

 from (u = 2, v = −3), we get 233 + 943 = 633 + 843, and this yields yet one more Ramanujan
number: 842751.

It is difficult to say how Ramanujan found these formulas. But that complaint holds for just about 
everything that Ramanujan found!

Readers who wish to see Euler’s derivation of the general integral solution of the equation 
a3 + b3 + c3 = d3 should consult the book by G H Hardy and E M Wright, Introduction to the
Theory of Numbers.

























http://nrich.maths.org/public/

NRICHNRICHNRICH
w e b s i t e  r e v i e whttp://nrich.maths.org/public/

WEBSITE
R E V I E W

“ The NRICH Project aims to en-
rich the mathematical experi-
ences of all learners. To support 
this aim, members of the NRICH 
team work in a wide range of 
capacities, including providing 
professional development for 
teachers wishing to embed rich 
mathematical tasks into every-
day classroom practice. On our 
website you will find thousands of 
our free mathematics enrichment 
materials (problems, articles and 
games) for teachers and learners 
from ages 5 to 19 years. All the 
resources are designed to devel-
op subject knowledge, problem-
solving and mathematical think-
ing skills. The website is updated 
with new material on the first 
day of every month.”

The blurb above speaks the truth 
– I’ve been using this website 
for over 3 years now and have 
found it to be a rich resource of 
many things mathematical. The 
home page (to be redesigned 
this month – so I will speak of 
the page I have been used to) 
makes mathophiles itch to get 
their scratch pads and pencils 
out – the math problems of the 
month are featured in promi-
nence here. There are problems 
at Stages 1-5 and the website 
invites students to send in their 
solutions for publication. This 
I feel is one of the best features 

of the NRICH page. What better 
incentive for students to hone 
their mathematical communica-
tion skills than the promise of 
having their work put up online! 
And the solutions I have seen 
have been chosen not just for 
correct answers but for innova-
tive thinking, logical presenta-
tion and good approaches to 
problem solving. 

On the right of the home page, 
you find resources for teach-
ers – a comprehensive array of 
articles, games and interactive 
resources. You can access previ-
ous issues where, reassuringly, 
problems come with solution 
sheets. Also, on the right, are the 
stem NRICH pages. The latter is a 
treasure trove of useful informa-
tion with a plethora of articles 
ranging from different ways to 
braid your hair (Rapunzel would 
have been quite content in her 
tower with access to this page!), 
to studying epidemics (‘Why do 
epidemics take off?  Why don’t 
they just carry on for ever once 
they’ve started?’ These simple 
models will help us to under-
stand what’s going on, and how 
science can help us to prevent 
epidemics happening in the first 
place) and best of all, ideas for 
Stem Clubs which will certainly 
be of use to overburdened math-
ematics teachers who would 

love to try new things but do 
not have the time to think them 
through. I found several stu-
dent friendly activities on the 
Bridges of Königsberg as well as 
a smooth transition to networks 
and traversability which helped 
me show students how it was 
possible to think past a problem 
which had no solution. (Note: 
You can read the web pages in 
Gujarati, Hindi, Tamil, Telugu 
or even Urdu, if you are so in-
clined!)

Searching on NRICH is easy and 
you can search by level or topic 
or activity (worksheets, games, 
articles and so on). My person-
al favourite is a game found at 
http://nrich.maths.org/6402 
which I stumbled upon while 
doing a search on ‘division’. It’s a 
great way to practise the tables 
but it goes beyond that because 
it actually encourages students 
to find the shortest possible 
route to guessing a number by a 
series of divisions. According to 
a friend who is a harried father 
of four, this game has occupied 
his children happily, on other-
wise interminable car journeys.  
And his ten year old has figured 
out the algorithm after playing 
for a while. 

Need I say more?

From the website:

by SnEha TITuS



 Constructivism values individual thinking 
strategies: In Mathematics, there can be no 
one fixed method to solve a given question. 
Sadly, teachers insist on a particular method, 
answer keys supplied to examiners allot marks 
for a set pattern of steps, and we end up with 
stereotyped answers. “Why can’t I solve it 
using my method?” is an often heard query. 
Following a set of steps may be beneficial as 
it brings in some kind of standardization and 
facilitates the teacher’s task, but in insisting 
on ‘following a fixed method’ we fail to nurture 
individual thinking strategies, we fail to allow 
creativity and this is the first stumbling block 
to constructivist thinking. 

 Constructivism involves sensory input: 
Mathematics teaching is often considered 
challenging as much of the content is ab-
stract. We may not have a plausible hands-
on activity for every concept in Mathematics, 
but wherever possible a multimodal approach 

(using both cognitive and psycho-motor do-
mains) should be used. To learn more about multi 
modal learning in Mathematics, I recommend 
Rashmi Kathuria’s work which can be accessed 
on http://mykhmsmathclass.blogspot.in/, 
http://mathematicslearning.blogspot.in/, 
http://mathematicsprojects. blogspot. in/. 

 Constructivism uses dovetailing, scaffold-
ing and extrapolation: Mathematics involves 
connections. An analytical teacher takes into 
account the previous content that needs to 
be dovetailed into the present content being 
explored. One needs to provide the minimum 
support that is adequate to the learner and thus 
provide leverage to further learning. One has 
to help the learner extrapolate what is pres-
ently being learned to what 
will be learned in the fu-
ture. When my daughter 
learned formally about 
odd and even numbers, 

explor ing

“What did you do at school?” is a routine question that most mothers ask their children when they 
return home. My daughter Priya was in Class One and when I asked her about her school day, she 
led me to the tamarind tree in our courtyard, picked a little leaf and said “I learned this.” Elaborating 
further as she pointed to every pair of leaflets, she said “Look, this is two ones are two, two twos 
are four, …” “Is this what teacher used in class today?” I enquired. “No, no. Teacher wrote this on 
the blackboard and made us say ‘two ones are two’. But mamma, I had seen this ‘two ones are two’ 
leaf while playing.” I loved the new name that the tamarind leaf had got. A ‘two ones are two’ leaf! 
Mathematics abounds all around. My daughter taught me this is through many more examples. 
Here is another interesting one. 

Priya was about three when she was helping me arrange eggs in the refrigerator. As we placed the 
eggs (in twos) in the egg-rack, she commented “5 is not a partner number, 6 is a partner number, 3 
is not a partner number, and 4 is a partner number.” Amused that my daughter was hinting at odd 
and even numbers, I asked her to explain. “With 3 eggs, we can place 2 eggs next to each other, but 
1 is left behind. When there are 4 eggs, all get partners, none are left behind.” I told her that ‘not a 
partner number’ is the same as odd and ‘partner number’ is the same as even, but she seemed hap-
pier with her terminology; it made more sense than ‘odd’ and ‘even’. Later, when she learned about 
the same in school, I reminded her of this incident. I had read about constructivism and designed 
constructivist activities, but it was this experience that gave me a chance to explore constructiv-
ism. Based on this and my experiences as a teacher, I share a few thoughts about constructivism.

Image Courtesy: Mukesh Malviya,
Govt School Teacher, Pahawadi, Shahpur, MP



I reminded her of the ‘eggs and partner numbers’ 
incident. Next I took a number of small circles and 
we arranged them in pairs. So if we took seven pairs, 
we had 14 circles. If we had 20 circles, we had ten 
pairs. The next step was to try and arrange circles in 
different combinations, not just pairs. For example, 
16 could be arranged as a pair pattern (2 x 8) but 
going beyond pairs, we could arrange 16 as (4 x 4); 
15 could be arranged as a 3 x 5 pattern; 18 could be 
arranged as either 3 x 6 or 2 x 9 pattern. This was 
dovetailing what Priya knew about even numbers 
into factors of a number, which was something she 
did not yet know. I had to provide help for one ex-
ample. The remaining examples were like a game. 
This step of providing minimal support is scaffold-
ing. Constructivism also takes into account extrap-
olation. This activity of arranging circles was now 
made challenging by giving 31 circles or 19 circles 
to arrange in a pattern. This helped introduce the 
concept of prime numbers. Meaningful connection 
between what is known and what needs to be known 
is the crux of constructivism. 

 Constructivism encourages queries: A healthy 
learning environment welcomes questions. I once 
had a question from my daughter: “When we add, 
subtract and multiply, we begin with the unit’s place. 
Why do we follow a reverse order when we divide?” 
Such questions indicate that the learner is looking 
for meaning, and this is the corner stone of con-
structivist learning. 

 Constructivism is contagious: Learners who in-
dulge in constructivist learning apply it to all forms 
of learning. They tend to use it for all subjects. They 

tend to experiment, to interact with content. They 
look out for alternative ways to arrive at knowl-
edge gaining. Most important, they see application 
of what they learn to real life. When Priya learned 
that metals expand on heating, she had this expe-
rience to share with me. She said “When we leave 
for school each morning, the two panels of the iron 
gate of our housing complex slide open easily. But 
when we come home in the afternoon, they are hot 
and have expanded. So the iron panels are touching 
each other and we have to apply force or sometimes 
kick the gate to open it.” I had experienced the same 
phenomenon but my adult mind had not made the 
connection. Allowing learners to see the application 
of what they learn and encouraging them to quote 
examples beyond the textbook should be a prime fo-
cus in constructivist learning. 

 Learn from and with your learners: All teachers 
need to learn from and with their learners. Learners 
could be forming connections based on misconcep-
tions, and this will mean learning something errone-
ous. My daughter is now thirteen and learning about 
tests of congruence of triangles. Recently she told 
me that when she was small and had seen figures 
of triangles, she thought that segments with one 
stroke across them were smaller than those with 
two strokes! Thankfully this misconception was 
corrected. Thus constructivism has a lot to do with 
the ideas that the learner forms about content and 
here vigilance on part of the mentor is required. Else 
such misconceptions affect further learning. Teach-
ers need to be vigilant about how learners learn, how 
they think and what they think. 

AGNES D’COSTA is an Assistant Professor at Pushpanjali College of Education, Vasai, Maharashtra. She holds a Ph.D in Education 
in the topic ‘A Study of the Relationship Between Multiple Intelligences and Teacher Effectiveness of Secondary School Teach-
ers.’ She was Project Coordinator for the project ‘Open Educational Resources in Teacher Education’. This was recognized as an 
innovation in Teacher Education by NCERT, June 2012. She is an avid contributor to Open Educational Resources. Her work can 
be accessed at www.wikieducator.org/User:Agnes. She may be contacted at c.dcosta@rediffmail.com

My experience with my daughter has taught me how learners think. Once a teacher is in sync with how the 
learner thinks, the strategies used to stimulate learning can be aligned to the learner’s thinking strategies. 
Constructivism fosters a ‘learning to learn’ attitude, an asset in today’s era. As educators let us learn how 
students learn, so that learning is enriching and enjoyable. And before I end, thank you, Priya, for being my 
teacher!



Letter Received from a Reader

We have received an interesting letter from Mr Aravind Badiger, in which he describes another way 
of generating Primitive Pythagorean Triples (PPTs). Let x be a positive rational number, and let a = x,
b = (x2 − 1)/2, c = (x2 + 1)/2; then a, b, c are rational numbers such that a2 + b2 = c2 and c − b = 1. To ensure 
that a, b, c are in ascending order we must have x > .2 1 2 414.+ . By choosing x appropriately and af-
ter multiplying by an appropriate constant to clear fractions we get a family of PPTs in which c − b has a 
constant difference; i.e., the difference between the largest two numbers in the triple is a constant. Here 
are some examples.

Let x take the odd integral values 3, 5, 7, . . .; we get the PPTs (3, 4, 5), (5, 12, 13), (7, 24, 25), . . . in which 
c − b has constant value 1.

Let x take the even integral values 4, 6, 8, . . .; after doubling to clear fractions we get the PPTs (8, 15, 17), 
(12, 35, 37), (16, 63, 65), (20, 99, 101), . . . in which c − b has constant value 2.

Let x take the fractional values 5/2, 7/2, 9/2, 11/2, 13/2, . . .; after clearing fractions we get the PPTs (20, 
21, 29), (28, 45, 53), (36, 77, 85), (44,117,25), (52,165,173), . . . in which c − b has constant value 8.

Let x take the fractional values 11/3, 13/3, 17/3, 19/3, . . . (fractions of the type odd number/3); after 
clearing fractions we get the PPTs (33, 56, 65), (39, 80, 89), (51, 140, 149), (57, 176, 185), . . . in which 
c − b has constant value 9.

Let x take the fractional values 8/3, 10/3, 14/3, 16/3, . . . (even number/3); we get the PPTs (48, 55, 73), 
(60, 91, 109), (84, 187, 205), (96, 247, 265), . . . in which c − b has constant value 18.

If we put x = m/n we get (a, b, c) = (m/n, (m2 − n2)/2n2, (m2 + n2)/2n2), and after scaling by 2n2 we recover 
the familiar formula for generating PPTs.

The interesting feature of this method is that it permits us to group PPTs into families in which the two 
largest numbers of the triple have a constant difference. And as a bonus, it makes it clear that this differ-
ence is always of the form k2 or 2k2 (where k is some integer). This is an interesting finding in itself.

ArAvind n. BAdiger studies Mechanical engineering in Basaveshwar engineering College, Bagalkot, Karnataka, 
india. He may be contacted at aravindnb91@gmail.com
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Professor William Thurston (1946–2012), who 
passed away in August of this year, was one of 
that rare breed: a high level research mathemati-
cian who made worthy contributions to school 
level mathematics education. His work in geom-
etry had an enormous influence on mathematics 
at the research level (it won him a Fields Medal, in 
1982); and his paper titled “Mathematical Educa-
tion” was studied very closely by the team (ap-
pointed by NCERT) that prepared the Mathematics 
Position Paper of the National Curriculum Frame-
work 2005.

The following poignant question once appeared on 
the ‘Math Overflow’ site: “What can one contribute 
to mathematics? I find that mathematics is made 
by people like Gauss; while it may be possible to 
learn their work and understand it, nothing new is 
created by doing this. It seems plausible that, with 
all the clever people working so hard on math-
ematics, there is nothing left for someone such 
as myself to do. Perhaps my value would be to 
act more like cannon fodder?” Thurston’s deeply 
thoughtful and humane response to this has great 
value for us and is worthy of careful study. Here 
are some extracts:

It’s not mathematics you need to contribute to. 
It’s deeper than that: how might you contribute to 
humanity and to the well-being of the world by pur-
suing mathematics? Such a question is not possible 
to answer in a purely intellectual way, because the 
effects of our actions go far beyond our understand-
ing. We are deeply social and instinctual animals, so 
much that our well-being depends on many things 
we do that are hard to explain in an intellectual 

way. That is why you do well to follow your 
heart . . . . Bare reason is likely to lead you astray. 
None of us are wise enough to figure it out intel-
lectually. . . The product of mathematics is clarity 
and understanding. Not theorems, by themselves. 
Is there any real reason that even such results as 
Fermat’s Last Theorem, or the Poincaré conjecture, 
really matter? Their real importance is not in their 
specific statements, but their role in presenting 
challenges that led to developments that increased 
our understanding. . . . The world does not suffer 
from an oversupply of clarity and understanding. 
How and whether specific mathematics might lead 
to improving the world is usually impossible to 
tease out, but mathematics collectively is extremely 
important. . . . I think of mathematics as having 
a large component of psychology, because of its 
strong dependence on human minds. Dehuman-
ized mathematics would be more like computer 
code. Mathematical ideas, even simple ideas, are 
often hard to transplant from mind to mind. . . . 
Because of this, mathematical understanding does 
not expand in a monotone direction. . . . The real 
satisfaction from mathematics is in learning from 
others and sharing with others. All of us have clear 
understanding of a few things and murky concepts 
of many more. There is no way to run out of ideas 
in need of clarification. The question of who is the 
first person to set foot on some square meter of 
land is really secondary. Revolutionary change does 
matter, but revolutions are few, and they are not 
self-sustaining — they depend very heavily on the 
community of mathematicians.

May that act as an inspiration to the community of 
math writers like ourselves!

The Closing Bracket …

– Shailesh Shirali



Specific Guidelines for Authors 

Prospective authors are asked to observe the following guidelines. 

1. Use a readable and inviting style of writing which attempts to capture the reader's attention at the start. 

The first paragraph of the article should convey clearly what the article is about. For example, the opening 

paragraph could be a surprising conclusion, a challenge, figure with an interesting question or a relevant 

anecdote. Importantly, it should carry an invitation to continue reading. 

2. Title the article with an appropriate and catchy phrase that captures the spirit and substance of the article. 

3. Avoid a 'theorem-proof' format. Instead, integrate proofs into the article in an informal way. 

4. Refrain from displaying long calculations. Strike a balance between providing too many details and 

making sudden jumps which depend on hidden calculations. 

5. Avoid specialized jargon and notation — terms that will be familiar only to specialists. If technical terms 

are needed, please define them. 

6. Where possible, provide a diagram or a photograph that captures the essence of a mathematical idea. 

Never omit a diagram if it can help clarify a concept. 

7. Provide a compact list of references, with short recommendations. 

8. Make available a few exercises, and some questions to ponder either in the beginning or at the end of the 

article. 

9. Cite sources and references in their order of occurrence, at the end of the article. Avoid footnotes. If 

footnotes are needed, number and place them separately. 

10. Explain all abbreviations and acronyms the first time they occur in an article. Make a glossary of all such 

terms and place it at the end of the article. 

11. Number all diagrams, photos and figures included in the article. Attach them separately with the e-mail, 

with clear directions. (Please note, the minimum resolution for photos or scanned images should be 

300dpi). 

12. Refer to diagrams, photos, and figures by their numbers and avoid using references like 'here' or 'there' or 

'above' or 'below'. 

13. Include a high resolution photograph (author photo) and a brief bio (not more than 50 words) that gives 

readers an idea of your experience and areas of expertise. 

14. Adhere to British spellings – organise, not organize; colour not color, neighbour not neighbor, etc. 

15. Submit articles in MS Word format or in LaTeX. 
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Suggested Topics and Themes 

Articles involving all aspects of mathematics Also welcome are short pieces featuring: 

are welcome. An article could feature: a new reviews of books or math software or a 

look at some topic; an interesting problem; an YouTube clip about some theme in mathemat-

interesting piece of mathematics; a connec- ics; proofs without words; mathematical 

tion between topics or across subjects; a paradoxes; ‘false proofs’; poetry, cartoons or 

historical perspective, giving the background photographs with a mathematical theme; 

of a topic or some individuals; problem solving anecdotes about a mathematician; ‘math from 

in general; teaching strategies; an interesting the movies’.

classroom experience; a project done by a 
Articles may be sent to :student; an aspect of classroom pedagogy; a 

discussion on why students find certain topics 

difficult; a discussion on misconceptions in Please refer to specific editorial policies and 
mathematics; a discussion on why mathemat- guidelines below. 
ics among all subjects provokes so much fear; 

an applet written to illustrate a theme in 

mathematics; an application of mathematics 

in science, medicine or engineering; an algo-

rithm based on a mathematical idea; etc. 

AtRiA.editor@apu.edu.in

Call for Articles
At Right Angles welcomes articles from math teachers, educators, practitioners, parents 

and students. If you have always been on the lookout for a platform to express your 

mathematical thoughts, then don’t hesitate to get in touch with us. 

Policy for Accepting Articles 

‘At Right Angles' is an in-depth, serious magazine on holds the right to translate and disseminate all articles 

mathematics and mathematics education. Hence articles published in the magazine. 

must attempt to move beyond common myths, perceptions 
If the submitted article has already been published, the author 

and fallacies about mathematics.
is requested to seek permission from the previous publisher 

The magazine has zero tolerance for plagiarism. By for re-publication in the magazine and mention the same in 

submitting an article for publishing, the author is assumed to the form of an 'Author's Note' at the end of the article. It is also 

declare it to be original and not under any legal restriction for expected that the author forwards a copy of the permission 

publication (e.g. previous copyright ownership). Wherever letter, for our records. Similarly, if the author is sending 

appropriate, relevant references and sources will be clearly his/her article to be re-published, (s) he is expected to ensure 

indicated in the article. that due credit is then given to 'At Right Angles'. 

'At Right Angles' brings out translations of the magazine in While 'At Right Angles' welcomes a wide variety of articles, 

other Indian languages and uses the articles published on The articles found relevant but not suitable for publication in the 

Teachers' Portal of Azim Premji University to further magazine may - with the author's permission - be used in 

disseminate information. Hence, Azim Premji University other avenues of publication within the University network.
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One often sees mistakes of the following kinds in children’s work: 0.2 < 0.199;

0.4 x 10 = 0.40; 0.05 = 0.5; they read aloud 0.32 as ‘point thirty two’. One sees a lack

of conceptual understanding even in the case of children who are able to solve problems correctly by 

applying the rule of aligning the decimal points (addition/subtraction problems) and counting 

decimal places (multiplication problems).  Solving the problems correctly does not necessarily imply 

that concepts have been fully understood. Curiously, children who are logical may have a larger 

number of these misconceptions! 

Why do these kinds of mistakes happen? One possible reason is that children apply the conceptual 

understanding they have gained about whole numbers to decimal numbers.

They try to fit new knowledge into existing schema; in this case, the understanding they

have built of whole numbers. Here are some examples of this phenomenon.

Ø In whole numbers a ‘longer’ number (a number with more digits) is bigger than a

‘shorter’ number (one with fewer digits); e.g., 1045 > 950. But this doesn’t hold in decimal 

numbers; e.g., 0.2 > 0.199.

Ø In whole numbers, when you multiply a number by 10 you place a zero at the end

of the number. Example: 40 × 10 = 400. But when we do .4 x 10 we get 4, not .40.

Ø In whole numbers, a zero placed in front of a number has no value and can be dropped. But we 

cannot drop the zero in 0.05.

Another reason is that they do not have a proper understanding of place value which presupposes 

multiplicative thinking. That is, they do not understand that the value of a

digit gets ten times larger when its position shifts one step towards the left.

Yet another reason could be that they have not internalized the understanding that the

decimal and fractional part of a number is less than a whole. 

So, how should we introduce decimals? Some teachers use money, others use measurement. But 

each of these turns out to have some limitations. (We discuss these at the end of this article.) 

Let us now list the prerequisite skills that children should have before we teach decimals.

Ø Basic concepts of fractions: 

a. part sizes are same and equal

 number of parts that make up a wholeb.

c. what numerator and denominator denote

 idea of equivalent fractions.d.

Ø Place values: Multiplicative relationship between succeeding places (ten is 10 times a unit, 100 is 

10 times a ten, etc.)
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The first step should be through usage of a concrete model, 

followed by a pictorial representation and lastly the introduction 

of the abstract symbol. Experience, understanding and 

verbalization are the sequence to be followed. 

Children need to understand that decimal numbers are part of 

the number system.  Fractions and decimal numbers are not 

internalized by children in the same way as natural numbers (to 

which they are exposed from childhood). It is necessary for the 

teacher to contextualize and bring in as many examples as 

possible of the usage of these numbers in daily life.

GUIDING PRINCIPLES TO
FOLLOW IN INTRODUCING
DECIMALS AND FRACTIONS
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TWO
Materials required: 

Decimal kit

Purpose:

To teach tenth and hundredth 

and discuss their relationship 

with the whole.

Use the kit to pose various questions:

Ask them to pick up one strip and tell them that it is called a tenth. 

Point out that each strip is one-tenth of the whole. Show pictures of 

grids with different numbers of tenths shaded, and get them to read 

the number of tenths shaded. Ask them “How many tenths make a 

whole?” Let them count and realize that 10 tenths make a whole. 

Connection between the name ‘tenth’ and the process of the whole 

being made into ten equal parts should be established clearly. 

Now ask them to pick up a small square and tell them that it is called a 

hundredth. Point out that each small square is one-hundredth of the 

whole. Lead them to realize that 100 hundredths make a whole. 

Show pictures of grids with different numbers of hundredths shaded, 

and get them to read the number of hundredths shaded. 

Connection between the name ‘hundredth’ and the process of the whole being made into hundred equal parts should be 

established clearly. 

Now ask how many hundredths make a tenth, how many hundredths make 2 tenth, etc. 

Encourage them to use their materials initially while answering the questions. 

The words ‘tenth’ and ‘hundredth’ are new for children and teachers need to stress the endings of the words so that children do 

not confuse them with the words ‘ten’ and ‘hundred’ which they are already familiar with. Point out that ten is 10 units, and that a 

tenth is less than a whole, it is one part of a whole which has been made into 10 parts. Similarly, point out that hundred is 100 

units, whereas a hundredth is one part of a whole which has been made into 100 equal parts.

The teacher must emphasize the fact that a tenth and a hundredth are less than a whole. The proper understanding of these 

relationships paves the way for conceptual understanding of decimals. 

You can pose other questions which require summation like:

• How many hundredths are there in 4 tenths and 5 hundredth? 

• How many tenths are needed to make 2 wholes? How many tenths are needed to make 3 wholes?

• How many hundredths will make 3 tenth? How many hundredths will make 7 tenth?

• By how much more is 8 hundredth bigger than 2 hundredth?

• How much more is 1 tenth than 1 hundredth? 

• How much less is 9 hundredth than 1 tenth?

• How many times a hundredth is 1 tenth?

You may find the children stumbling on questions which differentiate between ‘how much more’ and ‘how many times’ but these 

are areas we need to consciously strengthen. One requires additive thinking, whereas the other requires multiplicative thinking.

Even at the end of primary school children are not fully conversant with multiplicative thinking and often resort to additive 

thinking.

(This is at the oral level. Symbolic representation is introduced after the students become fully familiar with the language, the 

words tenth and hundredth.)
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ACTIVITY
ONE

Materials required: 

Square dot paper or square grid paper 

(notebooks with Square Grid paper are 

available in the market and are used 

generally in primary sections) minimum 

of 3 sheets.

Purpose:

Preparation of the decimal kit.

Help the children to prepare a decimal kit. This action itself 

helps in gaining understanding of tenth and hundredth and the 

relationship of these to the whole. It is better to prepare a kit 

than procure a ready-made one. Teacher should also prepare a 

kit consisting of several whole grids (to represent units), tenths 

and hundredths for demonstration purposes.

Paste these sheets on firm card paper. Then ask the children to:

• Outline a 10 x 10 grid which will be considered as the 

whole, and cut it out.

• Outline one more 10 x 10 grid, divide it into 10 equal parts, 

and cut out the 10 parts. 

• Outline one more 10 x 10 grid, divide it into 100 equal 

parts, and cut out the 100 parts.

(If teachers find this activity time consuming they can give it as 

home work. Children will be thrilled to get homework which 

requires them to draw and cut.)

The process of this kit making should help each child in 

visualizing that a whole is 10 times as large as a tenth, and a 

tenth is 10 times as large as a hundredth.



ACTIVITY
FIVE

Materials required: 

Square grid paper, colour pencils

Purpose:

To prepare a single grid that 

consolidates the relationship 

between fractions and 

decimals for future reference.

Ask children to outline a 10 x 10 square grid and divide it into 10 equal parts. 

Let them record the information as shown in the picture.

Vol. 1, No. 2, December 2012 | At Right Angles

ACTIVITY
FOUR

Materials required: 

Square grid paper, colour pencils

Purpose:

To establish the relationship 

between fraction and decimal 

(hundredth), to use the 

symbol and the name.

Ask children to outline a 10 x 10 square grid and divide it into 100 equal parts. Ask them to shade one 

hundredth. Let them record the information as shown in the picture.

Give them practice in shading different hundredths and recording the information.

Give them practice in shading different tenths and recording the information.

Ask children to outline a 10 x 10 square grid and divide it into 10 equal parts. Ask them to shade one 

tenth. Let them record the information as shown in the picture.

ACTIVITY
THREE

Materials required: 

Square grid paper, colour pencils, 

Number line

Purpose:

To establish the relationship 

between fraction and decimal 

(tenth), to use the symbol and 

the name.
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ACTIVITY
SIX

Materials required: 

Two long number lines as shown in the 

picture, made from paper or cloth, one 

showing 1 whole made into 10 equal 

parts and another without any 

markings; coloured bulletin board pins.

Purpose:

To illustrate that decimal 

numbers are less than a whole 

and lie between 0 and 1.

To build estimation skills

Initially show the number line which has been divided 

into parts and point out the different decimal 

numbers.

Ask children to point different tenths like .1, .5, .9, 

etc., on the number line.

Similarly you can also make and use a hundredth 

number line.

Ask children to point different hundredths like .25, 

.36, .78, etc., on the number line.

Turn the number line strip over so that the number line with markings cannot be seen by children. 

Now pose the question “Where will .2 be?” Let the child try to estimate where it will lie and mark that part with a pin. Pose 

more questions of that kind and let different children guess the positions of their numbers.

Now turn up the folded part and children can see for themselves how close their estimates were to the actual. Whoever 

comes closest to their guess is the winner.

ESTIMATION GAME

ACTIVITY
SEVEN

Materials required: 

Square grid paper, colour pencils

Purpose:

To compare decimal numbers, 

to establish the equivalence of 

numbers like .2 and .20.
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Ask children to shade 2 tenths in the left side grid (of the book) and write the decimal number underneath.

Ask them to shade 2 hundredths in the adjacent grid (right side of the book) and write the decimal number underneath. Let 

them compare and state the result.

Pose the question “Which is greater, .3 or .28?” 

After they respond ask them to shade 3 tenths on one side and 28 hundredths on the other side and verify if their answer 

was right.

Pose another such question and ask them to justify the answer. Note if they are able to use language correctly. Also 

check if they are first comparing the tenths and then the hundredths.

Elicit the rule for comparison of decimal numbers from them. Give many exercises which require them to draw and 

compare to help in the visualization process.

EXTENSION: Now give questions which have mixed decimal numbers.

ACTIVITY
EIGHT

Materials required: 

Square grid sheets, Number cards.

Purpose:

To show mixed numbers Involving 

whole and decimal parts.

Place the corresponding number cards of a decimal 

number to show the breakup of these numbers.

Demonstrate a mixed decimal number (involving 

whole and decimal part) using whole grid, tenths 

and hundredths as shown in the picture. Record it 

on a place value chart which can also be made on 

the black board.

Teach the children how to read the number in 

different ways, for example: 2.44.
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• Two point four four (it should not be read as two point forty four)

• Two units and forty four hundredth

• Two units, four tenths and four hundredths

Now show another combination which has only a whole and hundredths, e.g., 2.06.

Show how we use zero as a place holder and that the zero in the tenth place signifies that there are no tenths in the number. 

Since we have six hundredths we place the zero in the tenths place.

Use other examples which combine whole and hundredth alone, e.g., 3.08. 

Now discuss examples which have whole and tenths alone, e.g., 4.2. At this point raise the question whether we need to 

place a zero in the hundredth place to indicate the lack of hundredths.

ACTIVITY
NINE

Materials required: 

Grid showing thousandth, Place 

value chart.

Purpose:

To extend decimals to thousandth 

place and other places.

To prepare a grid showing thousandth: Let children make a 100 

square grid with slightly larger squares. Ask them to make 10 

parts of one of the hundredth squares to demonstrate a 

thousandth. This needs to be done only once for them to 

understand how small a thousandth is.

Ÿ Discuss the place value chart shown above. Point out that as 

one moves from left to right on the place value chart each 

place is one-tenth (1/10) of the previous place. Unit is 1/10 of 

ten, ten is 1/10 of hundred, and Hundred is 1/10 of 

thousand.

Ÿ Now pose the question “what is 1/10 of a unit called?”

A tenth.

Ÿ Next ask the question “what is 1/10 of a tenth called?”

A hundredth.

Ÿ Now ask “What will be 1/10 of a hundredth?” A thousandth.

Ÿ One can extend this question further by asking, “What is 1/10 of a thousandth?”

You can lead them to discover that there is no end to this process and one can thus have infinitely smaller decimal numbers. 

The place value chart comes of use while teaching multiplication and division of numbers by 10, 100, 1000, etc. Here one 

can say numbers become 10 times smaller when they move to the right. So when units are divided by ten we need to create 

a space for them to move and we do so by introducing the decimal point. It is important for the teacher and student to 

understand that the place value grid is invariant (that is, fixed), and it is the numbers that move to the right when multiplied 

by 10, and to the left when divided by 10. Then it is easier to understand where it is necessary to put a 0 as a place holder 

and where it is not.
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Measurement provides a natural context to introduce decimals, through the idea of accuracy (i.e., if a length is between 9cm 

and 10cm, and one is interested in finding the exact measurement, maybe to make a photo frame, one would have to 

further divide the gap; and 10 seems a convenient number because of our base 10 number system). However measurement 

doesn't give a conceptual understanding of place value.

Usage of money has also a similar difficulty because the relationship of 100 paise to 1 rupee cannot be represented 

concretely and still requires abstract understanding. i.e., a 10 paise coin is one tenth of a rupee and could be written as 0.1, 

and one paisa is one hundredth of a rupee and can be written as 0.01. We can discuss that 0.1 and 0.10 both represent the 

same amount and the misconception that 0.10 is point ten paise can be addressed. (Here the multiplicative property of place 

value can be explained in more detail.)

ACTIVITY
TEN

Materials required: 

Scale, small objects, money

Practical activities:

Do plenty of measurement 

activities and price related 

activities to give practice in using 

decimals.
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