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Don’t dumb it 
down! These notions 
are not all there is to 

computational 
thinking

Celebrate it!
computational 

thinking 
has potential 

energy!

Tick the correct option(s) below each question

Who have you seen or met today who has broken down
a complex problem into simpler problems?
 Google Maps
 The school canteen sta�
 The music teacher teaching you a new song

1. Who uses algorithms?
 A computer programmer
 A cook
 A travel guide

3.

Who do you think does their work better because they 
recognise a pattern?
 A craftsperson
 A musician
 A student

2. Learning to practise computational 
thinking will help a student with
 Coding and computer skills
 Study skills
 Troubleshooting

4.

Computational Thinking is an analytical thinking skill 
that draws on concepts from computer science but is a 
fundamental skill useful for everyone   (Wing [2006]).

“

“

It’s about being able to use 
technological devices

It’s all about writing code

It should be introduced only 
in middle school

You have to be a computer 
science teacher to teach it

It will just add to the curricular load

It can be practised even 
without a device

Some students may use 
it for coding

It is an approach that can 
be adopted even in primary 
school activities

Computational thinking is a practice, not a 
subject. It is about reasoning about procedures, 
about organising data, about how one works, 
about pattern recognition, �nding alternate
methods, about thinking.



From the 
Editor’s Desk . . .

In the Opening Bracket, Shailesh Shirali rightly points out the importance 
of teaching students to think- rationally, critically, deeply. The nature 
of mathematics makes it a powerful vehicle to develop logical reasoning 
and problem solving in students and the subject has been taught through 
the ages (ostensibly) toward this end. With NEP 2020 bringing in the 
aspect of Computational Thinking and aligning it with the mathematics 
curriculum, it is tempting to think of this as a deep dive into computer 
science, where coding would be taught just as any other language at the 
middle school level. It would be a total waste to limit computational 
thinking in this manner. When we viewed several articles in the July 2022 
issue through the lens of computational thinking, we discovered that 
the content of the articles was no different from that in our other issues. 
However, a pedagogical stress on the potential to develop computational 
thinking in students through mathematical investigations and problem 
solving would enable them to develop a tool-kit and an approach that 
will stand them in good stead in several situations- from analysing data 
in the form of inflammatory WhatsApp forwards to reasoning out false 
claims and, most importantly, verifying for themselves rather than blindly 
believing others. 

Hands on thinking- that’s what Amitabh Virmani’s article on Making 
the Great Icosahedron will lead you to try. Mahit Warhadpande and V G 
Tikekar follow up with Part 2 of The Minimal Instruments of Geometry 
and Spoof Numbers and Spoof Solutions, respectively. The former explores 
the measurement and drawing of shapes in Vedic times and the latter 
describes how changing a few restrictions can open up the solution set 
considerably. Working with constraints is nothing new, but people show 
amazing resilience in working around and through them! 

ClassRoom begins with a very comprehensive article by R Ramanujam on 
what Computational Thinking is. You will find answers to many of your 
questions here, along with useful links to further reading on the subject. 
A Ramachandran’s Investigative Questions has some simple investigations 



with plenty of scope for teachers to develop more challenges for students 
along these lines and in the process, teaching them how to decompose a 
problem, do a systematic search, recognise patterns and verify if solutions 
are correct. Both the articles on Integers (by Math Space) and the Mean 
(by the Mathematics Co-development group) come from the space of not 
accepting algorithms or formulas blindly but understanding and owning 
them. Encouragingly, Student Corner carries an account by two Class 7 
students who did just that - investigated the very stale (but very useful) 
difference of squares formula and gave their own twist to it. You will find 
many problems and investigations in both Problem Corner and in Student 
Corner. And do check out an example of computational thinking - data 
compression in a knitting pattern (?!!) - in Put Your Thinking Cap On!

TechSpace describes another investigation – The Spaghetti Problem which 
is linked to very simple mathematics and yet ensures that there is more than 
enough food for thought. Jonaki Ghosh ends with a beautiful description 
of mathematical and computational thinking and how they are entwined 
and yet differ.

Parvin Sinclair’s review of Rethinking Mathematics will certainly make you 
want to get your hands on the book and build your lesson plans around the 
activities in it - marrying social concerns with mathematical analysis and 
problem solving. Our manipulative review by Math Space is of the geoboard 
and this time, the review is accompanied by an activity sheet, to help you 
understand the value and potential of this popular classroom resource.

We end with the PullOut – which has activities for students to learn about 
the 3-D world they live in. Talk about math being real! Happy reading! 
And do revert with your comments on AtRiA.editor@apu.edu.in

Sneha Titus 
Associate Editor



The Opening Bracket . . .
Learning how to think

Looking around the world, one sees that things are in an absolute mess. Climate change is becoming 
more fearsome by the day, and violence and divisions are tearing humanity apart. Wars are being fought 
at this moment that are going to result in widespread suffering and starvation. We seem to be almost 
incapable of responding to these problems in a sane manner. What are we to do in such a situation? 
Rather than seek the solution through negotiation and treaties and agreements, must we not approach 
the problem through education?

Education is desperately in need of major reform, but where do we start? In NEP 2020 we read: “It is 
becoming critical that children … learn how to learn. Education must move towards learning about 
how to think critically” (page 4) and also: “Education must develop not only capacities such as critical 
thinking and problem solving but also social, ethical, and emotional capacities” (page 5). How would one 
go about setting up such an education system?

We shall express it this way: Education must emphasise learning how to think and not what to think. This 
has been said by numerous educators. It is repeated so often that it has lost meaning. Who can disagree 
with the statement that we must emphasise learning how to think? But are we capable of doing so? Are 
we capable of teaching children how to think?

There is a lot of talk about computational thinking these days. It is obviously important that we learn 
this skill for ourselves and ensure that children learn it too. This is not merely because of the needs of any 
particular nation or organization, but it is important to be able to think clearly and objectively and in 
sequence when we are solving the important problems of life: problems of food distribution, problems of 
rational budget allocation, problems of transport, problems of supply chains, problems of banking and 
interest rates, problems of corruption, and so many other problems. 

But surely, learning how to think goes far beyond this. We need to understand for ourselves why we are 
capable of hatred and violence, why we love power, why we love to compete, why we consume so much, 
why we need to be entertained, why we deceive ourselves so easily; and so many other such matters. A 
statement attributed to Albert Einstein is this: “We cannot solve our problems with the same thinking we 
used when we created them.” Do we understand this statement truly? To do so requires great humility; 
we need to take responsibility for the fact that we are the creators of the problems we see around us, and 
we need to feel this deeply, in our hearts, and not just our minds. Perhaps then we can begin finding out 
what it means to think for oneself. And most importantly, we need to learn to think without self-interest. 
But to do this we need to understand ourselves, we who are the creators of problems. This is what we 
must, profoundly and with utmost humility, endeavour to learn and to teach.

Can we not create such schools, such centres of learning?

Can we not all join in this endeavour which is so vitally important for the well-being of the Earth?

Shailesh Shirali



At Right Angles is a publication of Azim Premji University together with Community Mathematics Centre, Rishi Valley School and Sahyadri 
School (KFI). It aims to reach out to teachers, teacher educators, students & those who are passionate about mathematics. It provides a platform 
for the expression of varied opinions & perspectives and encourages new and informed positions, thought-provoking points of view and stories of 
innovation. The approach is a balance between being an ‘academic’ and ‘practitioner’ oriented magazine.

Chief Editor
Shailesh Shirali
Sahyadri School KFI and 
Community Mathematics Centre, 
Rishi Valley School KFI
shailesh.shirali@gmail.com

Associate Editor
Sneha Titus
Azim Premji University,
Survey No. 66, Burugunte Village,  
Bikkanahalli Main Road, Sarjapura,  
Bengaluru – 562 125
sneha.titus@azimpremjifoundation.org

Editorial Office
The Editor, Azim Premji University
Survey No. 66, Burugunte Village,  
Bikkanahalli Main Road, Sarjapura,  
Bengaluru – 562 125
Phone: 080-66144900
Fax: 080-66144900
Email: publications@apu.edu.in 
Website: www.azimpremjiuniversity.edu.in

Publication Team
Shantha K 
Programme Manager 
shantha.k@azimpremjifoundation.org

Shahanaz Begum 
Associate 
shahanaz.begum@azimpremjifoundation.org

Design
Zinc & Broccoli
enquiry@zandb.in

Print
SCPL
Bengaluru 560 062
www.scpl.net

Please Note:
All views and opinions expressed in this issue are those of the authors and Azim Premji Foundation bears no responsibility for the same.

A. Ramachandran
Formerly of Rishi Valley School KFI 
archandran.53@gmail.com 

Ashok Prasad
Azim Premji Foundation for Development  
Garhwal, Uttarakhand 
ashok.prasad@azimpremjifoundation.org

Giridhar S
Azim Premji University 
giri@azimpremjifoundation.org

Haneet Gandhi
Department of Education 
University of Delhi 
haneetgandhi@gmail.com

Hanuman Sahai Sharma
Azim Premji Foundation for Development 
Tonk, Rajasthan 
hanuman.sharma@azimpremjifoundation.org

Hriday Kant Dewan
Azim Premji University
hardy@azimpremjifoundation.org 

Jonaki B Ghosh
Lady Shri Ram College for Women 
University of Delhi, Delhi 
jonakibghosh@gmail.com

K Subramaniam
Homi Bhabha Centre For  
Science Education, Tata Institute of 
Fundamental Research, Mumbai 
subra@hbcse.tifr.res.in

Mohammed Umar
Azim Premji Foundation for Development 
Rajsamand, Rajasthan 
mohammed.umar@azimpremjifoundation.org

Padmapriya Shirali
Sahyadri School, KFI 
padmapriya.shirali@gmail.com

Prithwijit De
Homi Bhabha Centre For 
Science Education, Tata Institute of 
Fundamental Research, Mumbai
de.prithwijit@gmail.com

Sandeep Diwakar
Azim Premji Foundation for Development 
Bhopal, Madhya Pradesh 
sandeep.diwakar@azimpremjifoundation.org 

Shashidhar Jagadeeshan
Centre for Learning, Bangalore 
jshashidhar@gmail.com

Sudheesh Venkatesh
Chief Communications Officer  
& Managing Editor, 
Azim Premji Foundation

sudheesh.venkatesh@azimpremjifoundation.org

Swati Sircar
Azim Premji University 
swati.sircar@azimpremjifoundation.org

Editorial Committee 



07

12

17

Amitabh Virmani
Making the Great Icosahedron

Mahit Warhadpande
The Minimal Instruments of Geometry – II

V G Tikekar
Spoof Numbers and Spoof Solutions – II

Features
Our leading section has articles which are focused on 
mathematical content in both pure and applied 
mathematics. The themes vary: from little known 
proofs of well-known theorems to proofs without 
words; from the mathematics concealed in paper 
folding to the significance of mathematics in the world 
we live in; from historical perspectives to current 
developments in the field of mathematics. Written 
by practising mathematicians, the common thread 
is the joy of sharing discoveries and the investigative 
approaches leading to them.

ClassRoom
This section gives you a ‘fly on the wall’ classroom 
experience. With articles that deal with issues of  
pedagogy, teaching methodology and classroom  
teaching, it takes you to the hot seat of mathematics 
education. ClassRoom is meant for practising teachers  
and teacher educators. Articles are sometimes anecdotal; 
or about how to teach a topic or concept in a different 
way. They often take a new look at assessment or at 
projects; discuss how to anchor a math club or math 
expo; offer insights into remedial teaching etc.

23
R Ramanujam
Computational Thinking: The New Buzz

32
A. Ramachandran
Investigative Questions for the Middle School

41
Math Space
Put Your Thinking Cap On!

54

58

60

62

Adithya Rajesh
Galaxy of Unit Fractions with Tom and Jerry

Bedanto Bhattacharjee & Riddhi Sarkar
A New Way of Looking at the  
Difference-of-Two-Squares Identity

Atharv Tambade
Searching for Pythagorean Quadruples

Kian Shah
Problem 61 from KVPY 2016

Student Corner

49

51

Sasikumar
A Special Class of Strong Prime 
Numbers – Krishnan’s Primes

Siddhartha Sankar Chattopadhyay
On a Generalization of a  
Problem on Factorisation

Problem Corner

TechSpace
‘This section includes articles which emphasise the use 
of technology for exploring and visualizing a wide range 
of mathematical ideas and concepts. The thrust is on 
presenting materials and activities which will empower 
the teacher to enhance instruction through technology 
as well as enable the student to use the possibilities 
offered by technology to develop mathematical 
thinking. The content of the section is generally based 
on mathematical software such as dynamic geometry

34
Math Space
Integers: Extending the Number line 
with Coloured Counters

43
Mathematics Co-Development Group
A ‘Mean’ Question

Contents

Azim Premji
University

A Publication of Azim Premji University 
together with Community Mathematics Centre, 

Rishi Valley and Sahyadri School, Pune



Online Articles

Review
We are fortunate that there are excellent books 
available that attempt to convey the power and beauty 
of mathematics to a lay audience. We hope in this 
section to review a variety of books: classic texts in 
school mathematics, biographies, historical accounts of 
mathematics, popular expositions. We will also review 
books on mathematics education, how best to teach 
mathematics, material on recreational mathematics, 
interesting websites and educational software. The 
idea is for reviewers to open up the multidimensional 
world of mathematics for students and teachers, while 
at the same time bringing their own knowledge and 
understanding to bear on the theme.

64
Jonaki Ghosh
The Spaghetti Problem

software (DGS), computer algebra systems (CAS), 
spreadsheets, calculators as well as open source online 
resources. Written by practising mathematicians and 
teachers, the focus is on technology enabled explorations 
which can be easily integrated in the classroom.

72
Reviewed by Prof. Parvin Sinclair
Rethinking Mathematics: Teaching Social 
Justice by the Numbers

75
Reviewed by Math Space
Manipulative Review: Geoboard

PullOut
The PullOut is the part of the magazine that is aimed 
at the primary school teacher. It takes a hands-on, 
activity-based approach to the teaching of the basic 
concepts in mathematics. This section deals with 
common misconceptions and how to address them, 
manipulatives and how to use them to maximize 
student understanding and mathematical skill 
development; and, best of all, how to incorporate 
writing and documentation skills into activity-based 
learning. The PullOut is theme-based and, as its 
name suggests, can be used separately from the main 
magazine in a different section of the school.

Padmapriya Shirali

Spatial Thinking with 3-D Objects

Azim Premji
University

A Publication of Azim Premji University 
together with Community Mathematics Centre, 

Rishi Valley and Sahyadri School, Pune

Continue . . .



7Azim Premji University At Right Angles, July 2022

Keywords: Platonic solids, Kepler-Poinsot solids, great icosahedron, 
hands-on learning, paper models

AMITABH 
VIRMANI The great geometer H. S. M. Coxeter wrote in the preface of 

his book [1], “The chief reason for studying regular polyhedra 
is still the same as in the time of the Pythagoreans, namely, 

that their symmetrical shapes appeal to one’s artistic sense.” Indeed, 
although the mathematics involved in discovering and classifying 
various polyhedra [1] may not appeal to everyone, the beauty and 
symmetry of these objects [2] appeal to young and old alike.

A good classroom activity across the world is to make models of the 
five Platonic solids. The history of these objects goes back to the 
ancient Greeks. Famously, Euclid’s Elements ends by showing that the 
only solids with congruent regular convex polygons as faces with all 
vertices of the same type are the five Platonic solids (Wikipedia [6]; 
see Figure 1 for the definition of a regular polyhedron).

Note that in the previous paragraph, I used the term regular convex 
polygons, not regular polygons. In Euclidean geometry, a regular 
polygon is a polygon that has all angles equal and has all sides of 
the same length. Regular polygons may be either convex or star1. A 
natural question is then, what are the analogs of the Platonic solids 
if we use star polygons? Kepler, around 1619, noticed that twelve 
pentagrams can join in pairs along their sides and meet in fives at 
their vertices to form a solid. See Figure 2. This is a regular solid: all 
faces are regular polygons (pentagrams) with the same number of 
faces (five) meeting at each vertex. But it is not convex. (A polyhedron 
is said to be convex if all its diagonals are inside or on its surface.)

Kepler also noticed that the regular pentagrams can join in another 
way. They can meet at their vertices in threes instead of fives, and 
they enclose a different solid. This solid is also regular. It is also not 

Making the 
Great Icosahedron Fe

at
u

re
s

1 See the glossary for an example of a star polygon.
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convex. The two Kepler solids are called the small 
stellated dodecahedron and the great stellated 
dodecahedron [2]. See Figure 3. The reason for 
the names will become clear shortly.

One can say that Kepler discovered his two new 
solids by discarding the ancient Greek concern 
for convexity. Are there more? It turns out there 
are two more nonconvex regular solids. These 
are called Poinsot solids, named after Louis 
Poinsot, who discovered them in 1809. One of 
them is a version of the dodecahedron, called the 
great dodecahedron. The faces are simply twelve 
pentagons, but the pentagons now intersect 

each other. The second one is a version of the 
icosahedron, called the great icosahedron. It is 
made of twenty intersecting equilateral triangles. 
The triangles meet along edges at twelve corners 
as in the icosahedron. See Figure 3.

The Kepler-Poinsot and Platonic solids are 
members of a bigger class called uniform 
polyhedra. It is a common mathematical hobby 
to make models of uniform polyhedra. It is also 
one of my hobbies. A uniform polyhedron has 
regular polygons as faces, and all its vertices 
are equivalent. The faces and vertices need not 
be convex, as many uniform polyhedra are 
non-convex, sometimes called star polyhedra 
because of their star-like appearance. A uniform 
polyhedron may be regular if all its faces and 
edges are alike, quasi-regular if all its edges but 
not faces are alike, or semi-regular if neither 
edges nor faces are alike. If we do not count 
prisms and anti-prisms2, then there are exactly 75 
uniform polyhedra [5].

2  See glossary for definitions of a prism and an antiprism.

Figure 1. The five Platonic solids. Image from 
Wikipedia. A Platonic solid is a convex regular 

polyhedron. Its faces are congruent, convex regular 
polygons, and the same number of faces meet at each 

vertex. There are only five such polyhedra.

Figure 2. Kepler, around 1619, discovered this solid. It is 
starlike. Image from Wolfram Demonstrations Project.

Figure 3. The four Kepler-Poinsot solids. 
Image from Wikipedia.

Great dodecahedron

Great icosahedron

Small stellated 
dodecahedron

Great stellated 
dodecahedron
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Figure 4. The large equilateral triangle is a facial plane 
of the great icosahedron. On each side of the triangle we 
locate two points dividing the sides of the triangle in the 
golden ratio: τ : 1 : τ where √5 + 1

2τ = . The resulting red 
and green triangles combined in a fan-shaped pattern as 
shown in Figure 5 give the basic module for the model.

Father Magnus J. Wenninger (1919-2017) 
devoted much of his working life to making 
polyhedra models. The story goes that after he 
made 65 out of the 75 uniform polyhedra to 
display in his classroom, he contacted Cambridge 
University Press to see if there was any interest 
in a book on polyhedra models. The publishers 
indicated an interest only if he built all 75.

Wenninger did complete the models. To 
make the last 10 models, he needed the help 
of a computer. The difficulty lies in the exact 
measurements for lengths of the edges and shapes 
of the faces. This was the first time that all of 
the uniform polyhedra had been made as paper 
models. This project took nearly ten years, and 
the book [4], Polyhedron Models, was published 
by the Cambridge University Press in 1971.

Figure 5. We glue (or put together using a drawing 
software) 10 of the green triangles and 5 of the red 

triangles of Figure 4 in a fan-shaped net.

Since then, many enthusiasts have made these 
models. The Science Museum in London, 
for example, has a display of all 75 uniform 
polyhedra models.

During the March 2021 lockdown (working 
from home), I wanted to make the four Kepler-
Poinsot polyhedra. I mentioned one way of 
thinking about them above. There are several 
other ways. They can also be obtained by 
extending the faces of the dodecahedron and 
icosahedron, a process known as stellation. The 
two Kepler solids and the great dodecahedron 
can be obtained by stellating the dodecahedron. 
For this reason, the two Kepler solids are named 
the small stellated dodecahedron and the great 
stellated dodecahedron. A concise explanation on 
stellation can be found in [5] and more details in 
[1, 2, 4].

All four of the Kepler-Poinsot polyhedra are 
described inWenninger’s book. Making the three 
stellations of dodecahedron was not difficult. 
Wenninger’s book gives the precise angles for 
the triangles to be used to make nets: two-
dimensional drawings that can be folded into 
three-dimensional pieces. Various pieces were to 
be glued together, and we got the models.

The fourth model — the great icosahedron  
— was not so simple. Wenninger’s book tells  
us to use sketch paper and copy the net from 
the book. This was unsatisfactory. If I make  
120 + 60 triangles in this way, and suppose the 
angles in the book are slightly off, say, due to 
the scale of the printing, then the model will 
not come together. I took a break.

Figure 6. A vertex part for the great icosahedron.
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Figure 7. A paper model of the great icosahedron.

Then one day, flipping through the pages, I 
re-read the preface to the 1978 reprint of the 
book. It said, “[...] for best results very careful 
workmanship still demands that you make 
your own full-scale drawings of all facial planes 
from which patterns or nets are derived.” This 
is precisely what I did. To make a model of 
the great icosahedron I began by drawing (in a 
computer software) a large equilateral triangle: 
one of the faces of the great icosahedron. On 
each side of the triangle we locate two points 
dividing the sides of the triangles (in the 
computer software) in the golden ratio: τ : 1 : τ 
where √5 + 1

2τ = . With simple calculations we get 
the coordinates of the various triangles obtained 
by connecting those points. For the red triangle 
of Figure 4 a natural choice (leftmost vertex in 
the Figure being the origin) turns out to be

Figure 8. A paper model of a 
hexagonal antiprism.

and for the green triangle it turns out to be

We next glue 10 of the green triangles and 5 of 
the red triangles of figure 4 in a fan-shaped net 
shown in figure 5.

Next, we must fold the net of figure 5 in an 
accordion fashion — up and down — up and 
down. This gives us a vertex part for the great 
icosahedron, figure 6. Making 12 such vertices 
and gluing them in a dodecahedron form gives us 
the final model, figure 7.

It was a lot of fun to make this model and 
the other Kepler-Poinsot polyhedra models. I 
explained the construction to school students 
in our community’s summer camp. It was 
wonderful to see the kids’ eyes light up as they 
understood what was going on.

This model is a delight to hold.

The short article by Wenninger [5] is highly 
recommended for a quick tour of the world of 
polyhedra. For a visual account the book by Alan 
Holden [3] is highly recommended.

Looking at Figure 7, can you make out twenty 
intersecting equilateral triangles?

Figure 9. A regular star pentagon has five 
corner vertices and intersecting edges.

(1)

(2)



11Azim Premji University At Right Angles, July 2022

References
[1] H. S. M. Coxeter, Regular Polytopes, Dover Publications, 1973.

[2] Peter R. Cromwell, Polyhedra, Cambridge University Press, 1999.

[3] Alan Holden, Shapes, Space and Symmetry, Dover Publications, April 1992.

[4] Magnus Wenninger, Polyhedron Models, Cambridge University Press, 1971.

[5] Magnus Wenninger, “The world of polyhedra”, The Mathematics Teacher, Vol. 58, No. 3 (March 1965), pp. 244-248.

[6] Wikipedia, “Platonic solid”. https://en.wikipedia.org/wiki/Platonic_solid

Glossary

antiprism: An antiprism is a polyhedron whose sides are equilateral triangles, capped at top and 
bottom by a regular n-sided polygon. See Figure 8 for an example.

facial plane: A face (or facial plane) is a flat surface that forms part of the boundary of a solid 
object. A three-dimensional solid bounded by faces is a polyhedron.

golden ratio: Two real numbers a > b > 0 are in the golden ratio if their ratio is the same as the 
ratio of their sum to the larger of the two quantities, i.e.,

a
b

a + b
a

== .𝜏𝜏

 The Greek letter 𝜏𝜏 (tau) represents the golden ratio. It is an irrational number, a solution to 

the quadratic equation x2 − x − 1 = 0, with value 1 + √5
2

=𝜏𝜏 .

prism: A prism is a polyhedron whose sides are squares, capped at top and bottom by a regular 
n-sided polygon.

star polygons: A star polygon is a type of non-convex polygon. See Figure 9 for an example.

stellation: Stellation is the process of extending a polygon in two dimensions or a polyhedron in 
three dimensions. In three dimensions, starting with a polyhedron, the process extends its 
faces in a symmetrical way until they meet each other again to form the closed boundary of 
a new polyhedron.

uniform polyhedra: A uniform polyhedron has regular polygons as faces and is all its vertices are 
the same.

AMITABH VIRMANI is an associate professor at Chennai Mathematical Institute, Chennai. One of his hobbies 
is to make paper models of polyhedra. He may be contacted at amitabh.virmani@gmail.com.
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Keywords: Euclid, plane geometry, instrument box, ruler, compass, 
protractor, rope, geometrical constructions, shulbasutra

MAHIT 
WARHADPANDE In the first part of this article, we introduced three alternative 

geometrical toolkits: (a) the straight edge and collapsible compass 
of Euclid, (b) the ruler, compass and protractor of Birkhoff and 

Beatley, and (c) the rope of the Shulbasutras. We also discussed some 
rope based geometrical constructions. In this second part, let us 
compare how these toolkits fare against some historical geometrical 
construction problems. We also ponder the construction of the ‘tools’ 
themselves, for example, how might we establish whether a straight 
edge is indeed straight and so on.

1. Toolkit Capabilities
Let us examine briefly, four constructions of interest during ancient 
times: doubling the cube, angle trisection, constructing a general 
regular polygon and squaring the circle [1]. It was eventually proven 
that none of these could be accomplished by Euclid’s toolkit. As 
Birkhoff and Beatley summarized [2 pp. 165-166]:

‘ … [the construction of] a desired length x, from its relation to given 
lengths, a, b, c, etc., using only a straightedge and compasses… [is 
only possible] whenever the relationship of x to a, b, c, etc., involves 
ultimately only addition, subtraction, multiplication, division, and 
the extraction of square roots…’

‘In general, it is impossible to divide a given angle into a given 
number of equal parts by means of straightedge and compasses alone.’

The Minimal Instruments 
of Geometry – II

Fe
at
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In contrast, with the Birkhoff-Beatley toolkit, 
‘… any construction involving the laying off of 
lengths and angles can be made with scale and 
protractor, and to any desired degree of accuracy’ 
[2 p. 171]. The Birkhoff-Beatley toolkit can 
thus achieve all the four constructions under 
consideration.

Let us now study these four constructions in 
the context of the rope. It has been shown 
that the use of a markable straight edge and 
compass would make it possible to double a 
given cube and trisect a given angle [3, 4]. These 
constructions are thus possible with a rope. Angle 
trisection is also possible using the technique of 
finding rational multiples of a given angle with 
a rope as discussed in the first part of this article. 
This technique also enables the use of a rope 
to construct any regular polygon. As Figure 1 
indicates, the angles that characterize a regular 
polygon are rational multiples of 360°. 

Figure 1. Various angles in a regular n-gon

The construction of a regular n-gon can proceed 
by constructing a side of the required length 
and then repeatedly making either the required 
interior angles (n – 2)

2n
× 360°= , or the exterior 

angles (=(360°) ⁄ n) and marking off the required 
length on the new side thus formed. Another 
possibility is to construct the (360°) ⁄ n angles 
adjacently at the centre of a circle. The arms 
of these angles will then intersect the circle in 
points representing the corners of the required 
regular n-gon.

Finally, the rope can also be used to square the 
circle. Given a circle of radius r, our problem is 
to construct a square of area πr 

2, i.e., a square 
with side r √π. We begin by marking off the 

lengths of the circumference and diameter on 
a couple of ropes. Having obtained these two 
lengths, we can divide the circumference by 
the diameter using straight edge and compass 
techniques, to get the value of π (Figure 2). 

Figure 2. Calculating π from measured 
circumference and diameter of a circle

As mentioned earlier, given a length, we can find 
its square root, i.e., we can now get the length √π. 
Finally, we can multiply the two lengths r and 
√π to construct the length r √π (Figure 3) and 
subsequently a square with side of that length.

 

Figure 3. Multiplying the lengths r and √π

We note that though squaring a circle is thus 
possible using a rope, the Shulbasutras only 
contain approximate methods of squaring the 
circle [5, 6 pp. 143-149].

In theory, the Birkhoff-Beatley toolkit is still 
superior to the rope since it can construct a 
length and angle corresponding to any given 
number while the rope is limited to addition, 
subtraction, multiplication, division and 
square root constructions. However, given any 
number, we can always find a rational number 
as close to the given number as we want. Also, 
in practice, it would be impossible to mark the 
Birkhoff-Beatley tools with infinite resolution. 
This means that in practice, both the Euclid and 
the Shulbasutra toolkits should be able to yield 
geometrical constructions that are as accurate as 
the Birkhoff-Beatley toolkit constructions.
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2. Tool Construction
Finally, we consider some of the practical 
challenges that inventors may have faced when 
first making the geometrical instruments 
discussed in this article.

2.1.1 Rope
The rope is arguably the easiest instrument to 
construct among those discussed here. In fact, 
ropes are naturally available in the form of vines, 
creepers, etc. In contrast, the toolkits of Euclid 
and Birkhoff-Beatley require a minimal degree 
of engineering expertise to precisely sculpt rigid 
objects into a desired shape. The finite thickness, 
limited flexibility and inconsistent elasticity of 
naturally occurring ropes pose challenges in 
accurate rope based constructions and make 
small scale geometrical constructions (e.g., which 
fit in a sheet of paper) almost impossible. The 
invention of cloth or thread making processes 
would resolve some of these difficulties by 
making possible ropes of near zero-thickness and 
high flexibility.

2.1.2 Compass
As we have seen, the rope itself can act as a 
compass. But even the contemporary compass 
shown in the first part of this article is fairly easy 
to make, for example, by using two sticks tied 
together at one end and the other end of each 
stick sharpened to a ‘point’.

2.1.3 Straight Edge
How do we know whether a ‘straight’ edge is 
indeed straight? One way could be to line up a 
taut rope next to the edge to determine if it is 
straight. If it is not, it can be pared appropriately.

Another suggestion is to exploit the axiom: 
‘There is one and only one straight line between 
two given points’ [2 p. 44]. In Figure 4, given 
two points P and Q, we use our ‘straight’ edge 
to draw a line joining them. We then turn our 
‘straight’ edge around to swap its ‘top’ (T) and 
‘bottom’ (B) ends and draw a ‘straight’ line again 

between P and Q. If the ‘straight’ edge is indeed 
straight, the two ‘straight’ lines thus drawn 
should exactly coincide. 

Figure 4. Test for straight edge

In Figure 4, the two lines do not coincide and we 
conclude that our ‘straight’ edge is in fact, not 
straight. We can also use the figure to tell where/
how the ‘straight’ edge should be pared to make 
it straighter. 

Does the ruler in your geometry box pass these 
tests of straightness?

2.1.4 Ruler
Given a straight edge, how does one mark it with 
infinite resolution? As mentioned earlier, this is 
impossible in practice. We can however, find a 
rational number as close as required to any given 
number and construct that length using the 
rope, or the straight edge and compass, which 
we now know how to make. We can use these 
constructions to mark the ruler.

One of the early small units of length was the 
width of a finger. Let us say this is standardised 
to 2 cm. Then, using the ruler of your geometry 
box as a straight edge along with the compass, 
how much further can you divide the 2cm length 
accurately? Can you construct a 1mm resolution 
ruler with these tools?
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2.1.5 Protractor
The usual geometry box protractor is marked 
at every 1° angle from 0° to 180°. All these 
angles, being rational multiples of 360°, can be 
constructed with a rope. 

 Can we get a protractor marked at every 
1° without using a rope? Euclid’s Elements 
demonstrates the straight edge and compass 
construction of a regular 15–sided polygon. 
Further, angle bisection could be used to 
construct a regular 2n-gon once a regular n-gon 
has been made. From the 15-sided polygon, we 
can thus arrive at 120, 240 and 480-sided regular 
polygons generating 3°, 1.5° and 0.75° angles 
(i.e., (360°) ⁄ n angles) but not quite a 1° angle. 
In the 19th century it was proved that we cannot 
construct a 360-sided regular polygon using only 
a straight edge and compass [8]. However, using 
a markable straight edge, we can trisect the 3° 
angle to get a 1° angle. 

Another option could be to use the ‘table of 
chords’ which had been developed to various 
degrees of accuracy by Hipparchus, Aryabhata, 
Ptolemy and possibly others [9, 10]. In modern 
terminology, this is equivalent to tables of the 
sine function. Ptolemy’s table effectively listed 
the sine of angles from 0° to 90° in steps of 0.25°. 
In particular, we have sine(1°) ≈ 0.01745. We 
can use this to construct the triangle of Figure 
5 and therefore a 1° angle. Note that this is still 
only an approximate construction since the 
value of sine(1°) can only be constructed to some 
rational approximation.

Figure 5. Constructing the required 
angle knowing its sine value

Ptolemy himself might have done this reverse 
construction using chords in a circle instead of 
right angled triangles in keeping with how he 
derived the sine tables.

Some practical difficulties remain with all the 
approaches discussed here. Can the length 
division of a rope be carried out to the extent 
required to generate a 1° angle with sufficient 
accuracy? Similarly, how accurate can the 
construction of a 3° angle with straight edge 
and compass be and further, how accurate can 
its trisection be? If we choose to use the table 
of chords and assume that a ruler with 1mm 
resolution is available to us, then in Figure 5, 
we will need to choose L~10m to create a 
1mm difference in length between the base and 
the hypotenuse so that they can be accurately 
constructed to get a 1° angle between them. 
Is it easy to make a 10m ruler with better than 
1mm accuracy and resolution?

3. Conclusion
In theory, the Birkhoff-Beatley toolkit can 
do many constructions that the Euclid or 
Shulbasutra toolkits can’t. However, in practice, 
both the rope and the Euclidean toolkit should 
be able to achieve a similar accuracy to that 
of the Birkhoff-Beatley toolkit for any given 
construction. In fact, to ‘invent’ the Birkhoff-
Beatley toolkit (i.e., to accurately mark the 
ruler and the protractor), we will need to use 
constructions based on the rope or the Euclid 
toolkit which in turn are constructible using 
intuitive (axiomatic) ideas. Can you think of a 
better way?

We also saw that the rope has some added 
advantages over both the Euclid and the 
Birkhoff-Beatley toolkits, due to its flexibility.

We reiterate that the ideas and techniques 
discussed in this article need not be a historically 
accurate account of how these developments 
actually took place. Rather, our attempt is to 
focus on ideas that are mathematically correct. 
In that spirit, we ask our readers what tools 
they would like in their toolkit to enable the 
construction of an increasing variety of curves 
and shapes? How can these tools themselves be 
constructed?



16 Azim Premji University At Right Angles, July 2022

References:
1. Wikipedia, “Constructible Number: Impossible Constructions”,  

https://en.wikipedia.org/wiki/Constructible_number#Impossible_constructions

2. G.D. Birkhoff, R. Beatley, “Basic Geometry”, Third Edition, Chelsea Publishing Company, 
https://archive.org/details/mathematicalrecr00ball/page/n6/mode/2up

3. Wikipedia, “Doubling the Cube: Using a marked ruler”, 
https://en.wikipedia.org/wiki/Doubling_the_cube#Using_a_marked_ruler

4. Wikipedia, “Angle Trisection: With a marked ruler”, https://en.wikipedia.org/wiki/Angle_trisection#With_a_marked_ruler

5. S.G. Dani, Medha Limaye, “On some Geometric Constructions in the Sulvasutras from a Pedagogical Perspective – II”, At Right 
Angles, Issue 10 (July 2021), Azim Premji University, p. 11, https://cdn.azimpremjiuniversity.edu.in/apuc3/media/publications/
downloads/magazine/ATRIA-ISSUE-9-March-2021.f1624112854.pdf

6. Bibhutibhusan Datta, “The Science of the Sulba”, Calcutta University Press, https://archive.org/details/in.ernet.dli.2015.282348

7. Sir T. L. Heath, “The Thirteen Books of Euclid’s Elements”, Volume 1, University of Chicago Press,  
https://www.wilbourhall.org/pdfs/heath/1_euclid_heath_2nd_ed.pdf

8. Wikipedia, “Constructible Polygon”, https://en.wikipedia.org/wiki/Constructible_polygon

9. W. E. Clark, “The Aryabhatiya of Aryabhata”, University of Chicago Press, 1930, pp. 28-29, 
https://www.wilbourhall.org/pdfs/aryabhatiyaEnglish.pdf

10. G. J. Toomer, “Ptolemy’s Almagest”, Duckworth, 1984, pp. 57-60, https://isidore.co/calibre/get/pdf/
Ptolemy%26%2339%3Bs%20Almagest%20-%20Ptolemy%2C%20Claudius%20%26amp%3B%20Toomer%2C%20G.%20
J__5114.pdf

MAHIT WARHADPANDE, a.k.a. the Jigyasu Juggler, retired after a 16-year career at Texas Instruments, 
Bengaluru, to pursue his interests at leisure. These include Mathematics and Juggling, often in combination (see 
http://jigyasujuggler.com/blog/). He may be contacted at jigyasujuggler@gmail.com.

Sharing Food……Fraction-wise
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divided by 3? 
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We welcome images for ½ divided 
by ⅓ too!
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Spoof Numbers and 
Spoof Solutions - Part II

We recall, from Part I of the article [2], the
definitions of spoof number, spoof solution,
Euler’s sigma function S(n) and perfect number.

Definition 1 (Spoof number; spoof solution). While
constructing a number belonging to a particular family, if we
relax some of the required properties or rules of formation
but ensure that all the other properties of that family are
satisfied, then such a number is called a spoof number of that
family. Sometimes, such a number is also called a quasi
number of that family. We similarly define the notion of spoof
solutions by considering the spoof numbers obtained in the
context of solutions of equations.

Definition 2 (Euler’s sigma function). If n is a positive
integer, then S(n) = sum of all the divisors of n.

Definition 3 (Perfect number). A positive integer is called a
perfect number if all its divisors add up to twice that integer,
i.e., if S(n) = 2n.

The first few perfect numbers are 6, 28, 496 and 8128. We
now explore the consequences of bringing these two notions
together: spoof number and perfect number.

1

Keywords: Spoof number, spoof solution, Fermat number, perfect 
number, Mersenne number, triangular number, Euler

V G TIKEKAR

In this two-part article, we 
consider the curious notion 
of spoof numbers and spoof 
solutions which we get 
when we partially relax the 
conditions needed to define 
particular number families.
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Odd perfect numbers
As of December 2018, 51 perfect numbers are known. Curiously, all of them are even numbers. To the
great surprise of mathematicians and mathematics lovers, no one has been able to find any odd perfect
numbers. At the same time, and to the still greater surprise of mathematicians and mathematics lovers, no
one has been able to prove that there are no odd perfect numbers. All efforts in this direction, even by
renowned mathematicians, have failed. Mathematicians have therefore reluctantly put forward the
following:

Conjecture 1. Odd perfect numbers do not exist.

In passing, we note that the odd perfect number conjecture has been around for nearly 2000 years. The
statement that all perfect numbers are even was first made around 100 CE by the Greek mathematician
Nicomachus. So this is one of the oldest unsolved problems in mathematics.

Mathematicians have suggested that if odd perfect numbers are so difficult to find, then why not embark
on looking for spoof odd perfect numbers? We shall do this later in the article.

Before that, we enumerate certain properties that odd perfect numbers must satisfy, if they exist. They
have been proved over the centuries by various mathematicians.

Some properties of odd perfect numbers (OPNs), if they exist

(1) An OPN must have the form p4a+1m2 where p is a prime number of the type 1 (mod 4) and m is
a natural number. This is Euler’s characterization of an OPN. The prime p is called Euler’s prime
of the OPN.

(2) An OPN must have the form 12m + 1 or 36m + 9.

(3) An OPN must have at least 101 (not necessarily distinct) prime divisors.

(4) An OPN must have at least 7 distinct prime factors.

(5) The number of OPNs with k distinct prime factors is finite.

(6) An OPN with k distinct prime factors must be smaller than 24k .

(7) No OPN can be divisible by 105.

(8) If an OPN is not divisible by 3, 5, 7, it must have at least 27 prime factors.

(9) The largest prime factor of an OPN must exceed 107.

(10) An OPN must be greater than 102000.

But no OPN has ever been found. Mathematicians have therefore looked at the properties that such
numbers (if they do exist) must have, in the hope of finding contradictions between some of these
properties (which would immediately show that these numbers do not exist). Unfortunately, all such
efforts have failed. In fact, in 1888 Sylvester wrote:

The existence of an odd perfect number — its escape, so to say, from the complex web of conditions which
hem it in on all sides — would be little short of a miracle.

But nobody has been successful till now in proving the non-existence of an OPN. Since neither existence
nor non-existence of OPNs is established, we consider OPNs to be hypothetical numbers and study
them by relaxing some of the rules and try instead to obtain spoof OPNs. This thought leads us to the
next section.
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Spoof OPNs
In view of what has been noted above, let us relax our expectations and look for positive integers that
behave like OPNs. In other words, let us look for spoof OPNs.

Descartes’s spoof OPN. In 1638, René Descartes discovered the first spoof odd perfect number
(“Descartes’s number”):

D = 198, 585, 576, 189.

To explain why it is a spoof OPN, we express the number in factorized form as follows:

D = 32 × 72 × 112 × 132 × 220211.

Among the numbers on the right, the only one which is not prime is 22021 = 192 × 61. But let us
assume (incorrectly, of course) that 22021 is prime (this being our relaxation referred to above), and
evaluate the S-function of this number. So we have (since 3, 7, 11, 13 and 22021 are coprime):

S(198, 585, 576, 189)

= S(32 × 72 × 112 × 131 × 220211)

= S(32)× S(72)× S(112)× S(132)× S(220211) (by Rule 1; see [1])

= (1 + 3 + 32)(1 + 7 + 72)(1 + 11 + 112)(1 + 13 + 132)(1 + 22021) (by Rule 2)
= 397, 171, 152, 378 = 2D.

We see that the Descartes number D satisfies the defining property of a perfect number, but as 22021 is
not prime, D is not a true perfect number but rather a spoof perfect number. And since D is odd, D is a
spoof OPN.

Comment. If we replace 22021 by its prime factors 192 × 61 and write D as

D ′ = 32 × 72 × 112 × 131 × 192 × 61,

then D ′ will not be a spoof OPN.

Comment. Descartes believed that the number D would some day be modified to produce a genuine
OPN. Let us hope that such a day will eventually dawn and mankind’s efforts in the study of spoof
numbers will be rewarded.

Voight’s spoof OPN. This number was given by Voight more than three and a half centuries after
Descartes, in 1999. The number is

V = −22, 017, 975, 903.
To verify that this is an OPN:

S(−22, 017, 975, 903)

= S(34 × 72 × 112 × 192 × (−127)1)

= S(34)× S(72)× S(112)× S(192)× S([−127]1) (by Rule 1)

= (1 + 3 + 32 + 33 + 34)(1 + 7 + 72)(1 + 11 + 112)(1 + 19 + 192)[1 + (−127)] (by Rule 2)
= 2 × (−22017975903).
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Here the factor −127 is a negative integer and hence not prime (though 127 is prime), but we take it to be
prime. So V is a spoof OPN.

Comment. Instead of V, if we consider the number W = −V = 22, 017, 975, 903, then W will not be a
spoof OPN.

Using computers to generate spoof OPNs. Note that the two spoof OPNs studied above (D and V) are
big numbers, in contrast with the spoof even perfect numbers (like 60, 90, 84, 840) that we studied in
Part I. Note also that it took several centuries to obtain the second spoof OPN (V) after the first OPN (D)
came to light. Note further that the properties expected to be followed by OPNs are so involved that it
would be extremely difficult to obtain OPNs by mere hand-calculation. All these considerations led
mathematicians to use parallel computers (running for a few years non-stop) to look for spoof OPNs.
(This mode of research has been tried out for other problems; for example, the four-colour problem, which
was proved in 1976 after extensive use of computation.) This resulted in more spoof OPNs being found
(including D and V).

A group of researchers (‘BYU Computational Number Theory Group’ – BYU being ‘Brigham Young
University’) followed a systematic, computation-based research for obtaining more spoof OPNs. We give
below three examples of the many spoof OPNs that this team discovered.

Example 1. We relax the usual conditions and assume that 1 is prime. So

S(1) = S(11) = (1 + 1) (by Rule 2),

i.e., S(1) = 2 = 2 × 1 = 2. Thus 1 is a spoof OPN.

Example 2. Consider the number 101, 411, 037:

101, 411, 037 = 32 × 72 × 72 × 131 × (−19)2.

Here we relax the rules we normally use by (i) writing 192 as (−19)2 and treating −19 as prime; (ii)
considering the two 72s as separate entities rather than considering them together as 74; and (iii)
assuming that 7 and 7 are coprime so that 3, 7, 7, 13 and −19 are coprime (as is required to use
Rule 1). So:

S(101, 411, 037)

= S(32 × 72 × 72 × 131 × (−19)2)

= S(32)× S(72)× S(72)× S(131)× S[(−19)2] (by Rule 1)

= (1 + 3 + 32)(1 + 7 + 72)(1 + 7 + 72)(1 + 13)[1 + (−19) + (−19)2] (by Rule 2)
= 202, 822, 074 = 2 × (101, 411, 037).

So 101, 411, 037 is a spoof OPN.

Comment. Readers can verify that if we take (−19)2 as 192 (treating 19 correctly as prime), and/or take
74 in place of (72) · (72), then 101, 411, 037 will no longer be a spoof OPN.
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Example 3. Consider the number 11, 025:

11, 025 = 1 × 9 × 25 × 49 = (12)× (−3)2 × (−5)2 × (491).

Here we take 9 = (−3)2 rather than 32; and similarly, 25 = (−5)2, and then wrongly assume that
1,−3,−5, 49 are primes. Further, we take 12 as an additional factor, which does not change the value of
the given number but we benefit by getting an increased value of the S-function. So:

S(11025) = S[(12)× (−3)2 × (−5)2 × (491)]

= (1 + 1 + 12)[1 + (−3) + (−3)2][1 + (−5) + (−5)2](1 + 49) (by applying Rules 1 and 2)
= 3 × 7 × 21 × 50 = 22050 = 2 × 11025.

Hence 11025 is a spoof OPN.

Remark. As mentioned above, spoof OPNs assume importance because we do not yet have any actual odd
perfect numbers to exhibit. Mathematicians have adopted this kind of approach in the study of other
classes of numbers whose existence is in doubt.

Spoof solutions related to Fermat’s Last Theorem (FLT)
The notion of spoof solutions arises naturally when we are dealing with Fermat’s Last Theorem (better
known as FLT). We have all heard of Fermat’s hand-written statement (1637): “It is impossible to separate
a cube into two cubes, or a fourth power into two fourth powers, or in general, any power higher than the
second, into two like powers.” In short:

The equation xn + yn = zn has no solutions (x, y, z, n) in positive integers for n > 2. (1)

In particular:

The equation x12 + y12 = z12 has no solutions (x, y, z) in positive integers. (2)

Statement (1) has been proved in its most general form, so (2) is certainly true. That is, the equation (2)
cannot be solved exactly over the positive integers. But in the context of our discussion about spoof
numbers, the following question becomes meaningful:

Can we find spoof values of x, y, z so that the equation x12 + y12 = z12 is satisfied with those values?

To proceed with the discussion, we must relax some of the normal rules. One way of proceeding is to
move out of the set of positive integers, i.e., allow the use of non-integral numbers. This would mean that
the above equation is satisfied up to a sufficient number of decimal places. For example, if we take

x = 3987, y = 4365, z = 4472,

then we find (using regular pocket hand-calculator) that

x12 = 398712 ≈ 1.613447461 × 1043,
y12 = 436512 ≈ 4.784218174 × 1043,
z12 = 447212 ≈ 6.397665635 × 1043,


 (3)

then we find that the equation x12 + y12 = z12 is satisfied up to 9 decimal places.
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Concluding remarks
For many problems exact solutions either do not exist or are known not to exist. For example, (i) as of
today, the existence or non-existence of OPNs is not known, and (ii) FLT is known to be true. By
introducing the notion of spoof numbers and spoof solutions, we handle these situations and obtain
inexact solutions, but they are solutions that imitate the behaviour of exact solutions, and so behave
somewhat like them.

In the second part of this two-part essay, we have discussed what are known as spoof odd perfect numbers
that behave somewhat like perfect numbers, provided we relax some of the usual rules. We also discussed
what can be called spoof solutions to the equation that occurs in Fermat’s Last Theorem. It is interesting
that we can make some progress in these problems by allowing the relaxation of some conditions.
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I. The Buzz
As someone working on problems in computer science in the 
1980’s, I often used to be asked: What languages do you work 
in? I would typically answer, deliberately misunderstanding the 
question: Mostly in English, sometimes also in Tamil. In those 
days, working with computers meant writing programs in 
Fortran or Cobol or C, and that was what the questioner was 
asking about. My answer was about the programming language 
being irrelevant, the underlying concepts being more important. 
In fact, a more precise but entirely obscure answer would have 
been first order logic, and to a lesser extent, algebra, these being 
the languages for abstract reasoning about computation.

All this is to point out that the public perception of computing 
and computer science may not reflect the thinking that 
underlies these disciplinary domains. (This is quite natural; the 
public perception of methods used by electrical engineers or 
archaeologists is unlikely to be accurate either.) The increasing 
impact of computers on modern living is not necessarily a 
reason to expect such understanding either: people consult 
doctors all the time but do not expect to understand medical 
diagnosis and prescription.

It is when there is advocacy of such “disciplinary thought” 
in school education that it becomes important to examine 
such thought, and when it comes to school education, public 
perception and engagement is critical. Over the last decade 
there has been an increasingly vocal demand in many countries 
that Computational Thinking (CT) be a part of the school 
curriculum. In India, the National Education Policy 2020 (NEP) 
has not only given importance to CT, but has also coupled it with 



24 Azim Premji University At Right Angles, July 2022

mathematical thinking. While this has generated 
quite a buzz in the country, it is quite unclear 
whether there is a clear perception among the 
community of educators and teachers what CT is 
about, why it is being coupled with mathematical 
thinking at all, and whether promoting CT in 
schools is necessary or even desirable.

It is in this context that this article seeks to raise 
and address the following questions:
• Is the omnipresence of computers in modern 

life sufficient reason to promote (a) learning 
computing in school, and (b) learning CT in 
school?

• What does CT have to do with the role of 
digital technology in the classroom? Given 
the current massive inequality in the country 
in the digital space, isn’t promoting CT and 
digital technology going to further deepen the 
social divide?

• What does CT have to do with learning 
computer programming, and when should 
children start learning coding?

• What does CT have to do with school 
mathematics? With an already crowded 
mathematics curriculum, are we increasing 
the burden on students and teachers with 
additional themes?

• Is the Indian education system equipped to 
take up CT in schools?

Indeed, this list of questions is not exhaustive, 
and more questions will arise at all levels of 
implementation of the NEP in the years ahead. 
However, a national policy needs to answer these 
fundamental questions, and provide clarity of 
direction especially to the teaching community.

II. CT in the NEP
In India, computer science as a discipline is 
taught principally in the universities, with some 
preparation for it at the higher secondary level. 
In the first 10 years of school, so-called computer 
classes have tended to be mainly on usage of 
computers, platforms and the Internet. Even 
this is principally in urban private schools; the 

massive government school system typically 
introduces computer usage only at the secondary 
or higher secondary school level.

All this is set to change, with the advent of the 
NEP, which advocates computational thinking 
and coding throughout the school years. The 
relevant item from the NEP is worth quoting: 

4.25. It is recognized that mathematics and 
mathematical thinking will be very important 
for India’s future and India’s leadership role in 
the numerous upcoming fields and professions 
that will involve artificial intelligence, 
machine learning, and data science, etc. Thus, 
mathematics and computational thinking will 
be given increased emphasis throughout the 
school years, starting with the foundational 
stage, through a variety of innovative methods, 
including the regular use of puzzles and 
games that make mathematical thinking more 
enjoyable and engaging. Activities involving 
coding will be introduced in Middle Stage.

The coupling of mathematical and 
computational thinking is significant, since this 
suggests completely doing away with the current 
model of “computer classes” and moving over to 
teaching the science underlying computing, the 
emphasis being on thinking. This has important 
implication for mathematics education as well, 
shifting the focus from learning “operations”, 
formulas and procedures (to solve equations, 
etc.) to learning a way of thinking.

On the other hand, the justification for doing 
so, according to the passage, stems from the 
importance of mathematics and computational 
thinking for “upcoming fields and professions 
such as artificial intelligence, machine learning, 
and data science, etc.” Moreover, coding is 
advocated from middle school onwards. One can 
then be pardoned for thinking that the advocacy 
of CT is merely pandering to fashion, to what 
is currently considered important in computer 
science, and has to do with coding. (Indeed, 
some people have already started advocating the 
teaching of artificial intelligence and data science 
at high school!)
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The reference to “India’s leadership role” further 
raises doubt: school curricula should be decided 
by the aims of school education, and children 
should not be burdened with the responsibility 
of nationalist priorities. Again, the promotion of 
CT seems instrumental rather than essential as 
an educational objective.

This is the only mention of the phrase 
“computational thinking” in the NEP document. 
On the other hand, the NEP strongly advocates 
the use of digital technology in classrooms, 
devoting entire sections to it.

Meanwhile, the country suffered a huge 
disruption in school education due to the 
pandemic, when online education (accessible 
only to the elite) brought educational 
technology into prominence. This has led to 
further confusion, conflating the role of digital 
technology in the classroom with CT and 
teaching programming.

All this has led a large section of teachers into 
believing that introduction of CT in schools 
means the use of digital tools in classrooms and 
teaching programming from an early age, with 
perhaps “data science” and “artificial intelligence” 
as new subjects.

There is a real danger that this might indeed be 
what the NEP’s promotion of CT might end up 
as, in its implementation: promotion of digital 
tools and an emphasis on teaching coding from 
an early age. That would be a sorry consequence 
indeed.

III. What is CT?
Seymour Papert ([4]), an American computer 
scientist who pioneered computer programming 
activities for children, coined the term 
‘Computational Thinking’ in 1980. The 
phrase “computational thinking” appears in 
Mindstorms (p.182) but without elaboration. 
We find a detailed exposition of the idea in his 
1996 paper [5] - “An exploration in the space 
of mathematics education”. In it he offers the 
principle of Object before Operation: giving 
mathematical ideas a “thing-like representation”

(using the micro-world of programs) helps in 
thinking about them.

Jeannette Wing, another American computer 
scientist, popularised the term in 2006 ([6], 
[7]). She labels it an “attitude and skill set” that 
everyone can learn and use. Simply phrased, CT 
is a process that enables us to take a complex 
problem, understand it and develop possible 
solutions in a way that a computer, a human, 
or both, can understand how to implement the 
solution. If “mathematical thinking” is thinking 
like a mathematician, for Wing, “computational 
thinking” is thinking like a computer scientist.

What is critical here is the last part: why should 
solutions be developed in such a way that a 
computer can implement them? What do we 
mean by computer here? Which computer? What 
capabilities do we assume the computer to have? 
Asked in another way, how is it different from a 
human being implementing the solution?

It should be noted here that we do not mean any 
specific computer with specific capabilities here, 
but an idealised one. The important property of 
mechanical computation is that it does not get 
bored by repetition or start making mistakes. For 
a calculator adding five 3 digit numbers is no 
different an effort as adding 500 numbers, some 
in crores and some in thousands.

These are the two core elements to consider here: 
data size, and repetitiveness of algorithms. The 
essential property of computations is scaling. 
Once we devise such procedures, broken up into 
sufficiently simple steps, they scale up as necessary.

The characteristics of CT, according to Wing, 
are: decomposition, pattern recognition, abstraction, 
and algorithms.
• Decomposition lets us break up the complex 

tasks into subtasks, then each subtask into 
sub-subtasks, etc., until each is simple enough 
to carry out directly.

• While doing so we often find that some tasks 
come up again and again, perhaps with slight 
differences; then we consider them as instances 
of the same task, perhaps with a parameter 
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capturing the change. These are the processes 
of pattern recognition and abstraction.

• Algorithms are stepwise procedures that 
sequence the subtasks in the ‘best possible’ 
manner. CT includes not only such a 
methodology for problem solving but also ways 
of comparing solutions and evaluating them.

As an everyday example, consider preparing 
dinner for 4 persons. There is a significant 
amount of planning involved. Unless we decide 
a menu, we cannot shop for the ingredients. 
However, some of the ingredients may not be 
available, and hence the menu may need to be 
changed. Once we have the ingredients and the 
necessary kitchen appliances, if we have two 
persons cooking, we decide which tasks are to 
be done in what order, hopefully without one 
having to wait unduly for the other. Some tasks 
have to necessarily come earlier than others.

The recipes need to be clear and have to be 
followed carefully. Safety has to be maintained 
all along, and some “runtime checks” need to be 
done for both safety and taste. If, at the end of all 
this, you think you have a reliable procedure for 
making dinner for 4, consider how it would scale 
for a dinner for 20, and one for 100 guests (in a 
wedding). Further, compare the procedure with 
another person’s recipes for the same menu, or 
for different menus. The processes involved in all 
these illustrate CT.

This example serves to illustrate that 
computational thinking is relevant in everyday 
contexts. The notion of “computer” here is 
abstract and does not refer to any particular 
machine. Likewise, a recipe is not a program 
written in a programming language but serves a 
communicative purpose. Indeed this view of CT 
does not need electronic devices at all and we can 
speak of computer science “unplugged”! ([1])

Thus the central element of computational 
thinking is reasoning about procedures. It is 
less important to know many algorithms and 
procedures, or to write specific code, than to be 
able to design procedures and algorithms, to be 

able to reason about how they work, assess their 
performance, to explore alternative methods 
and compare them. It is less important to know 
definitions of data structures than to understand 
how data can be organised in multiple ways, how 
this affects procedures that use them and which 
organisation suits which requirement.

From this viewpoint, computation assumes 
focus rather than computing devices, and 
developing thinking that underlies computation 
becomes the educational goal. Such thinking 
helps the student understand data organisation, 
scaling, assessment of procedures and 
their comparison, iteration and modular 
abstraction, independent of whether solutions 
are sought by computer or implemented on 
computing platforms. An example of this 
would be knowledge of multiple procedures 
for integer multiplication or division, and an 
understanding of which is best used when.

When we ask a child to perform the addition 
53 + 28 + 47, it is quite alright to add from 
left to right (or from top to bottom, placing 
the numbers vertically, as children are used to). 
But it is computational intuition that suggests 
grouping as (53 + 47) + 28. This gives us the 
solution not only faster, but more conveniently, 
since we are used to the decimal system and 
multiples of 10 carry meaning for us. As 
“computers” this reformulation is easier on us. 
That commutativity of addition allows this is the 
mathematical understanding that underlies such 
computational thinking.

At the risk of belabouring the point, consider 
solving the equation: 2(x + 1) + 3(x + 1) = 10. 
Again, there is no harm in expanding brackets, 
carrying like terms involving x to the left, other 
terms to the right, and then divide, as a standard 
technique. However, algebraic computation 
suggests to us that the equation can be rewritten 
as 5(x + 1) = 10, giving the solution immediately. 
Once again, it is not about speed, but about 
facility: we are the ones computing here; so we 
consider different methods of computation and 
choose which one suits us best.
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Consider a question such as: which grows 
faster, 2x2 −50, or x2 +100? The awareness 
that as x increases, adding or subtracting a 
constant amount will not matter is essentially 
computational intuition, as also the fact that 
the function 2x2 always dominates x2. The 
mathematical justification underlying such 
intuition can be provided by computing the 
derivatives and comparing them.

What is being stressed here is that 
computational thinking involves not only 
devising procedures and (re-)organizing 
data appropriately but also consideration of 
alternative procedures and choosing the “best” 
among them, articulated according to some 
criterion. Then reasoning about procedures 
assumes central importance.

While the foregoing may be articulated as 
the essential meaning of CT, the superficial 
meaning, relating to the use of computers, 
has relevance as well. These objectives of 
CT education relate to use of computing 
platforms, tools and devices, and giving the 
students not only mastery over their use, but 
also create in them a predisposition to identify 
and utilise educational contexts in which the 
use of computation can help, and employ 
computations accordingly. An example of 
this would be generation of data according to 
some distribution to examine a probabilistic 
proposition (such as in the Birthday Problem), 
or plotting the trajectory of a ball in accordance 
with Newton’s laws. We are led to these 
objectives principally by “compulsions of the 
day”: since such tools are prevalent and easy to 
use. Educators must concern themselves both 
with their “right” and safe use, and with use 
of such opportunities to enrich educational 
practices. If we are seen to lessen the emphasis 
on use of such digital tools in pedagogy, it is 
not because we consider them less important or 
irrelevant to CT. Set against the danger of CT 
being entirely reduced to digital tool use (which 
does not seem merely hypothetical right now), 
we have tended to stress on reasoning about 
procedures being the essential meaning of CT.

IV. Curricular components
What does this understanding of CT imply for 
school education? Teaching CT in school then 
would include the following components. These 
relate not only to CT education in itself but also 
enhanced educational opportunities provided by 
CT. (Admittedly, they are not fully independent 
components and admit some overlap.)
1. Scaling: Systematic listing and counting 

of relevant parameters and verifying that 
all have been counted is essential for the 
transition from additive reasoning to 
multiplicative reasoning. This also paves 
the way for functional variation, and use of 
symmetries for counting. Comprehending 
large magnitudes by scaling small ones is a 
good way of managing complexity.

2. Iteration: Looking for patterns, finding 
a mechanism for pattern generation and 
modification, and visualisation of new patterns 
are all not only pleasant processes but also 
provide a link between aesthetics and formal 
reasoning. Understanding the power of 
iterating simple rules creates a foundation, 
not only for computation, but also for 
understanding the dynamics of systems.

3. Data organisation: The term “data handling” 
is familiar in school education but ends 
up only as graphical depiction of data and 
computing numerical summaries. But data 
can be represented in multiple ways, and 
which one is to be chosen when depends on 
the use such data is to be put to. Moreover, 
storage and retrieval of data requires memory 
structures. Designing such data organisation is 
neatly coupled with understanding of scaling 
and iterative data access.

4. Modelling: Discrete modelling of problems 
from real-life situations is largely unfamiliar 
territory in schools. Discrete structures like 
lists, trees, maps, graphs, lattices and networks 
arise naturally and provide abstract problem 
spaces for computation. Working with 
concrete representations of such structures 
early on can help in creating mental models 
for later facility with such models for 
computational abstractions.
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5. Algorithms: Starting from two-digit addition 
in arithmetic, school education provides a 
variety of procedures for students to learn 
– so much so that mathematics or science 
education often degenerates into a mere 
memorisation of pre-set procedures to be 
enacted on specific numerical data. Following 
algorithms with a view to understanding them 
is no doubt desirable, but devising procedures 
is at the heart of computational thinking. This 
requires a facility with procedures, reasoning 
about them, consideration of procedural 
alternatives and selection among them based 
on a clear rationale.

6. Programming: Concrete implementation of 
data organisation and algorithms on specified 
platforms to solve given problems is an 
essential skill. Coding, when accompanied 
by a feel for program structure, can be 
exhilarating while coding as translation of 
informal computing into a given formal 
language can be painful. Hence creating a 
good disposition for programming early on is 
essential for achieving eventual fluency.

7. Devices: Computers, smartphones and 
other devices provide platforms and tools 
for computation. Children need to learn 
purposive use of these tools, and develop 
mastery over them. At the same time, the 
challenges that such use may pose, due 
to physical, emotional and intellectual 
development of children need to be carefully 
considered. In a country of stark economic 
inequalities, access to such devices and 
platforms cannot be taken for granted either. 
Thus, the guiding principle in this regard has 
to be safe and nuanced usage based on need.

8. Social connectivity: CT provides a 
unique opportunity for viewing multiple 
social structures, their communicational 
infrastructure, identity formation, etc., and 
thus forges new links between mathematical 
formalism and society. As of now, even as 
students are engrossed in social media and 
lead parallel lives, their educational potential 
lies largely unaddressed. Importantly, the 

possibilities of student communities breaking 
language, regional and other barriers, working 
together on data creation and algorithm design 
need to be examined carefully.

9. Simulation and visualisation: This has 
perhaps been the oldest use of CT in school, 
learning to plot graphs of functions. However, 
once students understand the computational 
basis of visualisation and simulation tools, 
the tools can greatly expand their horizon 
of exploration across disciplines. (Consider 
students playing around with bonding 
structure of atoms in molecules.)

All these components would not carry equal 
weightage across the curriculum or across the 
stages, and it is the task of syllabus designers 
to spell out the weightage provided to each 
component at every stage.

V. Examples
Educational opportunities for CT already 
abound in the existing school curriculum, across 
the stages. In the primary and upper primary 
stages of schooling such opportunities are 
principally found in mathematics education, 
with a more expansive range across disciplines of 
study in the secondary stage.

We have already referred to reordering and 
regrouping techniques that often go under the 
rubric of “mental math.” There are also many 
opportunities for reasoning about counting 
procedures, You are in a hall where a wedding 
is taking place with lots of people, anywhere 
between 100 and 150. How would you actually 
count how many there are? How would you know 
you have counted them all? How would you be 
able to verify whether your answer is correct?

For small children, counting out 20 seeds is 
sufficient to provide challenges. Counting silently 
is different from calling out, but why? We can 
also watch for bunching and grouping, providing 
for natural data organization. When we ask the 
child to move aside 15 of them, we can see if she 
needs to re-start from the beginning.
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Consider the question: how many pairs of positive 
integers add up to 17? Surely there are multiple 
ways of listing such pairs, but reasoning involves 
employing some system of listing in order to 
be sure that all pairs are counted, and each pair 
counted only once. When a primary school child 
offers a ‘quick’ way to add 10, 100, etc., to a given 
number, and knows that this way is specific only 
to these numbers, he is employing CT in context. 
Finding multiple “reasonable” routes between 
two places on a map, or considering different 
arrangements of letters, or forming aesthetically 
pleasing patterns with beads of different colours, 
can be excellent exercises in CT as well.

There are many opportunities for data 
representation. Consider a village in Maharashtra 
where 61 families are Marathi speaking, 13 speak 
Kannada, 12 speak only Hindi, 8 are Tamilian, 
5 are Gujarati and there is one lone Bengali 
family. One boring table will surely suffice. But 
suppose that we use one flag for each family, 
a colour representing a linguistic group. How 
would we depict this information? The flags 
can even be organized in a 10×10 grid, but a 
chaotic distribution of colours does not help. 
Once we group colours together in the grid, we 
suddenly get a great deal of visual information, 
not only about how numerous a group is, but 
also the relative size of groups in the village. 
The histogram, presented then, elucidates this 
structure further. The point here is not so much 
about using the histogram to give numerical 
answers to questions, but to consider alternative 
data representations and arrive at the one that is 
most felicitous for answering questions. This is 
at the heart of data structuring in computational 
thinking, and prepares students for wonderfully 
creative notions such as codes (and error 
correction) that can come later on.

Iteration, essential to CT, provides an excellent 
tool for explorations. Consider starting with a 
square. Join the mid-points. A new shape comes 
up, repeat the process. This simple recipe leads 
to beautiful figures. When the student realises 
that the procedure is abstract and can be applied 
to any polygonal figure as “input,” she begins to 
have a taste for CT. We can then begin to see 

tessellations, kolams (or rangoli), and fractals as 
opportunities for creation of patterns by iterative 
procedure, reasoning about their variations and 
communicating such understanding in formal 
terms. In senior school, we can then describe 
the change of physical, biological and economic 
systems over time modelled by simple equations 
applied repetitively, and use these models to 
predict the long-term behaviour of such systems.

VI. Mathematics education and CT
One natural question that arises is whether 
computational thinking is actually different from 
mathematical thinking. This is really a question 
for foundational thought to be addressed by 
philosophers, One can narrow it down to the 
context of school education and assert that it 
helps pedagogically to meaningfully distinguish 
the two.

Before we explain this in detail, it is useful to 
consider university mathematics for a moment. 
Real analysis abounds with examples that 
distinguish mathematical thinking and CT. 
Bolzano’s theorem asserts the existence of a 
root in an interval when a continuous function 
has values of opposite sign in that interval. 
The Newton - Raphson method of successive 
approximations provides a computational 
method for finding a root. The Brouwer fixed 
point theorem asserts that for any continuous 
function f mapping a compact convex set 
to itself there is a point x such that f (x) = x. 
Computing such a fixed point is a challenge and 
a general algorithm had to wait until recently to 
be formulated. Extracting the algorithmic (or 
constructive) content of mathematical statements 
and proofs is a greatly interesting challenge.

At primary school level, we consider that it is not 
especially useful to distinguish mathematics from 
CT, but it is relevant to highlight opportunities 
for CT within the mathematics classroom, as we 
did above. At secondary level, it does become 
useful to distinguish the two. For instance, 
consider solving a system of n linear equations 
(with integer coefficients) in n unknowns. We can 
learn an algorithm to do this, namely Gaussian 
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elimination. Nonetheless it is required to develop 
some intuition into when the system given 
does not have a solution, or has more than one 
solution. Indeed, in the latter case, one can ask 
whether the system must have infinitely many 
solutions. A further question relates to rational 
numbers arising at intermediate steps. Should 
we retain them as rationals and employ rational 
arithmetic as we proceed further, or convert them 
to their decimal representations? Does this matter? 
What do we gain by using a matrix representation 
for the system of equations? Raising and answering 
such questions is essential for CT.

CT has relevance not only for mathematics 
education but also for science and other 
subjects in school. Giving prominence to 
data, understanding data qualitatively and 
quantitatively, and interpreting data are essential 
skills not only for science but also for geography, 
and though less appreciated this way, for history 
as well. The fine arts provide many creative 
opportunities for CT, and conversely CT can 
greatly enhance educational contexts in the 
graphic arts as well as in music and dance.

VII. Revisiting the questions
While we have discussed what CT means and 
how it can enrich school education, we have 
not answered the question of why we should 
do so. One thing is clear. Advocacy of online 
education and the use of digital technology in 
classrooms arise from premises very different 
from what we have been discussing here. Our 
reasons are different.
• Developing critical thinking is a central 

aim of education, and a critical outlook on 
algorithms is the need of the twenty-first 
century. Algorithms increasingly run our 
lives and developing a mature understanding 
of how data is created and processed by 
algorithms requires a foundational knowledge 
of how algorithms work. Mastery over these 
processes is best developed slowly, over the 
school years.

• Developing autonomy in the learner is again 
a central aim of education, and computing 

provides a powerful new addition to the 
learner’s toolkit for understanding the world. 
Not only is this new tool versatile, it adds 
capabilities as yet unexplored in school.

• Resource consciousness is a crucial need for 
modern life, and while this is an ecological 
imperative, instilling such consciousness 
needs to be attempted in ecologically sensitive 
practices; formal thinking on such lines is 
to be nurtured as well. Computing science 
provides a new such opportunity by bringing 
in a sensitivity to scaling and complexity of 
resource utilisation.

• Education embodies the spirit of modern 
democracy in preparing the citizen for 
participation in social development and 
directing the path of development. In the 
contemporary world, this is impossible 
without the citizen gaining democratic control 
over data, all data that involves her, and all 
data that is a determinant of her welfare. 
Educating the citizen on the relationship 
between data and democracy is thus a 
curricular imperative.

Viewed thus, the aims of CT education at school 
are about utilising the tremendous new potential 
brought by computation for autonomy and 
empowerment, and at the same time developing 
a critical outlook on data and algorithms, and a 
sensitivity to resource use as practices scale up.

These are broad statements of aims. What should 
be learnt at which school age is best decided on 
the basis of research on psychology of children’s 
learning, not by availability of technological 
tools. Indeed, digital technology can be seductive 
in its glamorous manifestation and we need 
to be wary of children becoming enslaved by 
devices. Such considerations again suggest that 
the relationship between CT and mathematics 
education as we have discussed provides more 
safe and meaningful opportunities for CT than a 
technology-based understanding of CT.

Lastly, whatever the NEP may advocate, and 
however it gets implemented, we need to ask 
whether we have the capability for introduction 
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of CT in the education system at all levels. The 
teaching community, especially in mathematics, 
is alive to the possibilities and needs support 
by way of pedagogic resources. The experience 
of CSpathshala, a voluntary initiative of ACM 
India, providing a complete CT curriculum 
([2]) for schools and reaching nearly a 
thousand schools in the country, offers a strong 
foundation from which many future initiatives 

can take off. We note here that the insights into 
CT presented in this article largely stem from 
the cspathshala experience.

The 2019 mathematics textbooks of Tamil 
Nadu State Board include an information 
processing track incorporating elements of a CT 
curriculum. The largely positive response from 
teachers to this initiative again offers hope.
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If the area of the green triangle is 6 sq. units, 
what is the area of the gold triangle?

(if you would like a 
hint………..please 
look at page 48)

Triangle Area 
Puzzle
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How is an investigation different from a problem? A 
problem generally has a  unique solution that can be 
reached by applying standard procedures. In the case 

of an investigation, one is not sure at the outset if there is a 
solution at all or if there are multiple solutions. We may face novel 
situations requiring new approaches. 

Here are two such questions. They require only middle school 
level arithmetic and algebra, but one has to search for possible 
solutions in a systematic way. The second one is much more 
demanding than the first.
I.  Can a 3-digit number and the two 3-digit numbers obtained 

from it by cyclic permutation of its digits, form an arithmetic 
progression? That is, can the three 3-digit numbers abc, bca 
and cab form an A.P.? We should leave out trivial solutions 
such as 111, 222, etc. 

 A variation on this theme would be to allow one of the digits 
to be zero. In that case one of the numbers in the set of three 
would actually be a 2-digit number, but one could consider 
that as having three digits, with zero in the hundreds place. 

II. Can a 3-digit number and the two 3-digit numbers obtained 
from it by cyclic permutation of its digits, form a geometric 
progression? That is, can the three 3-digit numbers abc, bca 
and cab form a G.P.?

If you are not familiar with the term ‘cyclic permutation,’ here is 
an explanation. The triangle in Figure 1 has its vertices marked A, 
B, C. You may read the letters A, B, C in clockwise order, starting 
with each letter in turn. This gives the arrangements ACB, CBA 
and BAC. These three arrangements are cyclic permutations of each 
other. If the same is done moving in anti-clockwise direction, we 
obtain the arrangements ABC, BCA and CAB. These are again cyclic 
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permutations of each other. Together they account 
for the six permutations of the three letters. 

 

Figure 1

Solutions

 b a c

1 1 1
2 2 2
3 3 3

4
4 4
1 8

5
5 5
2 9
8 1

6
6 6
9 2

7 7 7
8 8 8
9 9 9

Table 1

I. If abc, bca and cab form an A.P., then  
2(100b + 10c + a) = 100a + 10b + c + 100c 
+ 10a + b, which simplifies to 7b = 4a + 3c. 
We now need to find values of a, b, c from the 
set 1-9 that satisfy the above equation. We can 
assign values 1-9 to b in turn, and search for 
corresponding values of a and c. The possible 
values of a, b, c are given in Table 1.

We obtain the following solutions: 
(259,592,925), (148,481,814), (851,518,185), 
(962,629,296).

Allowing one of the digits to be zero, we have 
the following solutions: (037,370,703) and 
(740,407,074).

The common difference is ±333 in all cases. 

Now, why is this so? In all cases the common 
difference is (100b + 10c + a) – (100a + 10b + c) 
= (–99a + 90b + 9c). We also know that a, b, c 
must satisfy the relation 7b = 4a + 3c. Substituting 
for b from this relation, the expression for the 
common difference becomes, after simplification, 
333
7

(c – a). Since this quantity has to be an 
integer, (c – a) must be a multiple of 7. Since 
both are single digit numbers, the value of  
(c – a) can be only ±7; the only solutions for  
(c, a) are (7, 0), (0, 7), (8, 1), (1, 8), (9, 2) and 
(2, 9), which is reflected in our six solutions.

The reader is invited to find alternative approaches 
to solving the above problem.

II. If abc, bca and cab form a G.P., then
(100b + 10c + a)2 = (100a + 10b + c) (100c + 10a 
+ b), which, after multiplication, combining like 
terms, and cancelling common factors, reduces to 
a2 + 10ac = 10b2 + bc, or 10(b2 – ac) = a2 – bc.  
As the RHS in the last equation is a multiple 
of 10, it suggests a way to check for possible 
solutions.

There are only two solutions: (432,324,243) and 
(864,648,486).

The numbers in the second set are all twice those 
in the first set. Naturally they have the same 
common ratio of 3/4.

A. RAMACHANDRAN has had a longstanding interest in the teaching of mathematics and science. He studied 
physical science and mathematics at the undergraduate level and shifted to life science at the postgraduate level. He 
taught science, mathematics and geography to middle school students at Rishi Valley School for two decades. His 
other interests include the English language and Indian music. He may be contacted at archandran.53@gmail.com.
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Take some rectangular dot sheets, sketch-pens of two 
contrasting colours (for example, red and green), a ruler 
and a pencil, and you are good to go. Join the dots along 

the second line from the top. Then do the same for the 5th, 8th, 
11th, … lines so that there are 2 lines of dots followed by a line 
connecting them. Pick a dot somewhere in the middle and label 
it 0. Then label the dots on its right successively 1, 2, 3, etc. Label 
each horizontal line similarly. Make sure all the zeros are along the 
same vertical line (Figure 1).

Figure 1 Figure 2

This article is intended for students – as hands-on play with integers by extending the 
number line and combining it with coloured counters. For this activity, rectangular dot 
sheets are better than square grid sheets since the dots can be joined by horizontal lines 
to form number lines and will not get mixed up with existing lines. We also recommend 
sketch pen/crayon/colour pencil of two contrasting colours to draw the counters.
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1. Successors and Predecessors
(a) Pick any number between 2 and 5. Circle the 

corresponding dot. Draw as many counters 
as the number represents, equally spaced as 
shown (Figure 2 - chosen number here is 3).

(b) In the next line, draw the successor of your 
number and circle the corresponding dot.

(c) In the next line, draw the predecessor of your 
number and circle the corresponding dot.  

(d) Draw the predecessor of 1. How many 
counters did you draw? Why?

(e) What would be the predecessor of 0? Where 
and how can we draw it?

For predecessor, we move one step ___________ 
(right/left).

To find the dot corresponding to the 
predecessor of 0, we extend the number line 
to the left. Since this is one unit away from 
zero, we must mark it as 1, but since it is on 
the left side, we mark it as “-1” to distinguish 
it from the 1 on the right. As before, we 
draw one counter, but since it corresponds to 
movement towards the left, we use the other 
colour and we draw it below the number line 
(Figure 3). We call counters of this second 
colour negative and those of the first colour, 
positive. Accordingly, the numbers on the 
right of zero are called positive and those on 
its left are called negative.

2. Newer numbers with predecessors
(a) Draw the predecessor of -1. Using the same 

pattern, how do we write this number?
(b) Now, mark the part of the number line 

which is to the left of 0 accordingly, i.e.,  
-2, -3, -4, etc. 

(c) Draw -4. How many ________ (red/green) 
counters did you use __________ (above/
below) the line to the ________ (left/right) 
of 0?

To draw the predecessor of any negative 
number, we have to add a negative counter  
as we shift one step left.

Try these:
I. Draw the predecessor of -3
II. The predecessor of -19 is _____. It is shown 

with _____ (18/20) _________ (red/green) 
counters. It is to the ________ (left/right) 
of -19.

Think:
A. Which city is colder? Shimla with a 

temperature of -7°C or Leh at -8°C.
B. If sea level is at 0m, and a pole of height 5m 

is shown by 5, then a hole of depth 5m is 
shown by ____. Does -6 show a hole deeper 
than a hole of depth 5m?

C. Titir with a debt of `300 is _______ (richer/
poorer) than Tinku who has a debt of `200.

3. Successor of -1
For successor, we take one step to the _______
(right/left). 

(a) So, which number is the successor of -1?
(b) How many counters (and of which colour), 

are used to show the successor of -1?
(c) For successor (and therefore to step right), we 

have always added a positive counter. When 
we do that here, we get a _____________ 
(red counter/green counter/red-green pair)?

Figure 3
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This positive-negative counter pair is 
equivalent to zero (Figure 3). Therefore, we 
will call such a pair zero pair from now on. 
Since they are equivalent to zero, they can be 
removed (or added) as and when needed.

Try this:
III. 0 = ___ + ___ = ___ + ___ = ___ + ___

4. Adding positive numbers
When we add positive numbers, we take not one, 
but several steps to the _____ (right/left). 
(a) Add 3 to 4 (b) Add 2 to -5 (c) Add 5 to -3
(a) 4 + 3: Take ___ steps to the _______  

(left/right) of 4, adding 1 _______  
(red/green) counter at each step.

(b) (-5) + 2: Take ___ steps to the ______  
(left/right) of -5, adding 1 ______ 
(red/green) counter at each step.

(c) (-3) + 5: Take ___ steps to the ______  
(left/right) of -3, adding 1 ______  
(red/green) counter at each step.

Figure 4

You used the same strategy for all three sums. 
Did you get zero pair(s) for any sum?
Is adding a green counter the same as removing 
a red counter? Try the same sums by doing this 
(when you can). Do you get the same answers?

So, adding a positive number is equivalent to:
(i) Adding positive counters (and removing 

zero pairs if any) OR
(ii) Removing negative counters

Try these:
IV. (-5) + 5 = ____
V. (-8) + ___ = 0
VI. ____ + 4 = 0

Think: 
D. Titir got `100 as birthday gift and paid off 

some of her debt of `300.
a. How much debt remains?
b. So, how much debt was paid off, i.e., 

subtracted?
c. If the original debt of `300 is written as 

-3, then the gift is ___ (1/-1) and the 
remaining debt is ___.

d. Debt remaining = Original debt + gift  
= original debt – debt paid off, i.e., ____  
= (-3) + ___ = (-3) – ____ 

e. What would have happened if the gift was 
`500?

E. Tintin had a debt of `200 but made a profit 
of `600.
a. How much did Tintin have after making 

the profit?
b. If a debt of `200 is -2, then a profit of 

`600 is ___ (6/-6) and the amount Tintin 
had after profit is ___.

c. So, (-2) + ___ = ___

5. Subtracting positive numbers
When we subtract positive numbers, we take  
not one, but several steps to the ___________ 
(right/left) and you remove ___________ 
(red/green) counters. 
(a) Subtract 2 from 6 (b) Subtract 3 from -2 
(c) Subtract 5 from 3
(a) 6 – 2: Take ___ steps to the ___________ 

(left/right) of 6, removing 1 counter at each 
step.

(b)  (-2) – 3: Take ___ steps to the ______  
(left/right) of -2, removing 1 counter at each 
step.

 What did you do when you ran out of 
counters? 

(c) 3 – 5: Take ___ steps to the ___________ 
(left/right) of 3, removing 1 counter at each 
step. 

 What did you do when you ran out of 
counters? See Figure 5 for some ideas.
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You used the same strategy for all three sums. 
Did you find that removing a green counter is 
the same as adding a red counter? Try the same 
sums by doing this,  when you can. Do you get 
the same answers?

So, subtracting a positive number is 
equivalent to:
(i) Removing positive counters (and 

removing zero pairs if any) OR
(ii) Adding negative counters
Did you try the zero-pair strategy? What 
happens if we add zero-pairs till there are 
sufficient positive counters and then remove 
them?

(b) (-2) – 3 by adding zero pairs

(c) 3 – 5 by adding zero pairs OR

Figure 5

Try these:
VII. (-5) – 7: 

a. Do you reach/cross 0 on the number line 
for this?

b. How many zero pairs do you need to add?
c. Try this one step at a time. How many 

negative counters do you add?
d. To which number do you add these 

negative counters?
e. So, adding ___ negative counters to ____  

is _____ + (-____). How is this related to  
(-5) – 7?  

f. How are the number of zero pairs and the 
number of negative counters related?

VIII. 10 – 14: 
a. Do you reach/cross 0 on the number line 

for this?
b. How many (minimum) zero-pairs do you 

need? 
c. Try this one step at a time. How many 

negative counters do you add?
d. To which number do you add these 

negative counters?
e. So, adding ___ negative counters to ____ 

is ____ + (-___). How is this related to 10 
– 14?

f. How are the number of negative counters 
and the minimum number of zero pairs 
related?

6. Adding negative numbers
When we add negative numbers, we take not 
one, but several steps to the _____ (right/left).
(a) Add -2 to -5  (b) Add -3 to 4  
(c) Add -5 to 3

(a) (-5) + (-2): Take ___ steps to the ______ 
(left/right) of -5, adding 1 _____ (red/
green) counter at each step.

(b) 4 + (-3): Take ___ steps to the ______  
(left/right) of 4, adding 1 ______ (red/
green) counter at each step.

(c) 3 + (-5) Take ___ steps to the ______  
(left/right) of 3, adding 1 ______ (red/
green) counter at each step.

Did you get zero pair(s) for any of the sums? 
Is adding a red counter the same as removing a 
green counter?

Figure 7

Figure 6
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The direction of steps comes from point 2 
above if we consider that adding -3 can be 
as adding -1 three times. Another way of 
looking at it would be that it is different 
from adding 3. So, it can’t be stepping in the 
same direction as adding a positive number! 
Observe that if we add negative counters, then 
the resulting zero-pairs should be removed 
(Figure 6). What are the different strategies 
you can use for (c) Do you get the same result 
as proceeding one step at a time? (Figure 7)
So, adding a negative number is equivalent to:
(i) ______________ (adding/removing) 

negative counters 
(ii) ______________ (adding/removing) 

positive counters
Is this similar to anything we have already 
done? 
So, adding a negative number is equivalent 
to ______________ (adding/subtracting) a 
positive number. 
How are the two numbers related?1

Try these:
IX. 7 + (-7) = ___
X. 3 + ___ = 0
XI. ____ + (-6) = 0

Think:
F.  Tinku had a debt of `200 and had to borrow 

`500 more. 
a. How much is the total debt now?
b. If debt of `200 is -2, what are the new 

debt and the total debt?
c. So, (-2) + ___ = ____ = (-2) – ____

G. Tintin had `400 and made a loss of `100. 
a. If `400 is 4, then a loss of `100 is ___ 

(1/-1).
b. How much did Tintin have after the loss? 

And the loss of `___ is ___.

c. So, 4 + ____ = ____ 
d. If the loss was of `900, then what would 

Tintin have? 

H. Tulu also had `400 and spent `100.  
a. Using the same notation, is this 4 – 1 = 

___?
b. So, is  4 + (-1)  = 4 – 1?
c. If Tulu had to spend `900, then what 

would have happened? 
d. If Tintin made a loss of `900 and Tulu 

had to spend `900, who is poorer?    

7. Sums of integers 
Consider the following pairs of sums: 5 + (-1) 
and (-1) + 5 (Figure 8) as well as 2 + (-5) and 
(-5) + 2 (Figures 9). What do you observe?

Figure 8

Figure 9

(a) How are the two pictures in Figure 8 related? 
Can you reflect the top one along some 
vertical line to get the bottom one? 

(b) Where is this vertical line or the mirror for 
Figure 8?2

1 Adding -n is equivalent to subtracting n, its additive opposite
2 Figure 8: mirror is x = 2 = (5 + (-1))/2 … this can be observed by noting the common portion for both diagrams and 

therefore the common interval, and then finding the midpoint of that interval
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(c) Observe the number this mirror is passing 
through. How can you get this number from 
5 and -1?

(d) Can you find a similar mirror for Figure 9? 
Which number does it pass through? How 
can you get this number from 2 and -5?3 

(e) Do observe similarly for (-2) + (-4) and  
(-4) + (-2). What about 3 + 4 and 4 + 3?

Try this with different pairs of numbers. What 
do you conclude?4

8. Subtracting negative numbers
When we subtract negative numbers, we take not 
one, but several steps to the _____ (right/left) 
and you remove ________ (red/green) counters. 
[Now you should be knowing what to do when 
you run out of counters.]
(a) Subtract -3 from -5 (b) Subtract -4 from 3 
(c) Subtract -6 from -2
(a) (-5) – (-3): Take ___ steps to the ______ 

(left/right) of -5, removing 1 counter at  
each step.

(b)  3 – (-4): Take ___ steps to the ______  
(left/right) of 3, removing 1 counter at  
each step.

 If we add zero-pairs, that is equivalent to 
adding which numbers? (See Figure 10)

 Can you complete the steps? What comes 
after 3 in the last step?

 3 – (-4) = 3 – (-4) + 0 = 3 – (-4) + ___  
+ (-___) = 3 ______________ 

 Did you get the same answer both times? 
(c) (-2) – (-6): Take ___ steps to the ______  

(left/right) of -2, removing 1 counter at each 
step. What happens if we add zero-pairs 
instead? How many zero-pairs do we need? Can 
you complete the steps? [Hint: see Figure 11] 
(-2) – (-6) = (-2) – (-6) + 0 = (-2) – (-6) 
+ ___ + (-___) = (-2) _______________ 
Did you get the same answer?

Figure 10

Figure 11

Therefore, we can add ___________ 
(positive/negative) counters as we take 
these steps. 
So, subtracting a negative number is 
equivalent to:
(i) ______________ (adding/removing) 

negative counters 

(ii) ______________ (adding/removing) 
positive counters

Is this similar to anything we have already 
done? 
So, subtracting a negative number is 
equivalent to ______________ (adding/
subtracting) a positive number. 
How are the two numbers related?5

3 Figure 9: mirror is x = -1.5 = ((-5) + 2)/2
4 Commutative property of addition for integers
5 Subtracting -n is equivalent to adding n, its additive opposite
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Try these:
XII. 6 – (-2)

a. Do you reach/cross 0 on the number line 
for this?

b. How many zero pairs do you need to add?
c. Try this one step at a time. How many 

positive counters do you add?
d. To which number do you add these 

positive counters?
e. So, adding ___ positive counters to ___ is 

___ + ___. How is this related to 6 – (-2)?  
f. How are the number of zero pairs and the 

number of positive counters related?

XIII. (-3) – (-4) 
a. Do you reach/cross 0 on the number line 

for this?
b. How many (minimum) zero-pairs do you 

need? 
c. Try this one step at a time. How many 

positive counters do you add?
d. To which number do you add these 

positive counters?
e. So, adding ___ positive counters to ____  

is ____ + ___. How is this related to  
(-3) – (-4)?

f. How are the number of positive counters 
and the minimum number of zero pairs 
related?

Think:
I. On a chilly winter night, Srinagar’s 

temperature was -6°C while Leh’s was -17°C 
and Gangtok was 8°C
a. Which city was colder: Srinagar or Leh?
b. _________ was colder than _______ by 

(____ – ____) = ____ °C.
c. Gangtok was warmer than Srinagar by  

(____ – ____ ) = ____°C.

J. Titir and Tinku started the day with `100 
each. Titir made a profit of `300 while 
Tinku made a loss of `200. 
a. How much did each one have at the end 

of the day?
b. Who was richer and by how much?
c. Titir’s profit is ___ and Tinku’s loss is ___.
d. ______ (Titir/Tinku) is richer and by  

____ – ____ = ____ .

K. Next week, they again started with `100 
each, but both made losses – Titir `500 and 
Tinku `300.
a. How much did each one have at the end 

of the day?

b. Titir ended with ___ while Tinku with 
___.

c. ______ (Titir/Tinku) is richer and by  
____ – ____ = ____ .

MATH SPACE is a mathematics laboratory at Azim Premji University that caters to schools, teachers, parents, children, NGOs working 
in school education and teacher educators. It explores various teaching-learning materials for mathematics [mat(h)erials] – their scope as 
well as the possibility of low-cost versions that can be made from waste. It tries to address both ends of the spectrum, those who fear or 
even hate mathematics as well as those who love engaging with it. It is a space where ideas generate and evolve thanks to interactions with 
many people. Math Space can be reached at mathspace@apu.edu.in

The idea of this article was triggered by an exploration by Jauhar K M and Nagendra Singh, MA Education students at Azim Premji 
University, as part of their Curriculum Material Development – Mathematics course.



Put Your Thinking Cap On!
It’s not just computers which compress data, 
human beings do it very often too! How often 
have you used an acronym to remember an im-
portant list? Or jotted down points from a talk 
that you want to remember later? Data com-
pression uses many aspects of computational 
thinking- decomposition, pattern recognition, 
abstraction and algorithms.

Suppose you saw a really cool knitting pattern 
and you had only a scrap of paper to write it 
on. Can you use computational thinking to 
fit the pattern on your piece of paper and be 
able to recreate it without losing any important 
instructions?
This is the original pattern.

Knitting a Rainbow Cap
Using No. 9 needles, cast on 120 stitches.
Knitting loosely, complete 7 inches of single rib 
(Knit 1 (K1), Purl 1 (P1)). {You can increase 
this length, if you want a longer cap.}

Shaping the cap:

Row 1: *(K2 together, (K1, P1) (3 reps)) continue 
from * till end. 
Pattern repeats (reps) every 8 stitches.  
(105 stitches)
Row 2: K1 P1 till end.
Row 3: *(K2 together, (K1, P1) (2 reps), K1) 
continue from * till end taking care to preserve  
the single rib. Pattern reps every 7 stitches.  
(90 stitches)
Row 4: As Row 2 but taking care to preserve the 
single rib pattern.
Row 5: *(K2 together, (K1, P1) (2 reps)) continue 
from * till end taking care to preserve the single rib.
Pattern reps every 6 stitches. (75 stitches)
Row 6: As Row 2 but taking care to preserve the 
single rib pattern.
Row 7: *(K2 together, (K1, P1, K1)) continue from 
* till end taking care to preserve the single rib. 
Pattern reps every 5 stitches. (60 stitches)

Row 8: As Row 2 but taking care to preserve the 
single rib pattern.
Row 9: *(K2 together, (K1, P1)) continue from  
* till end taking care to preserve the single rib. 
Pattern reps every 4 stitches. (45 stitches)
Row 10: As Row 2 but taking care to preserve the 
single rib pattern.
Row 11: *(K2 together, (K1)) continue from * till 
end taking care to preserve the single rib. 
Pattern reps every 3 stitches. (30 stitches)
Row 12: As Row 2 but taking care to preserve the 
single rib pattern. 
Row 13: *(K2 together) continue from * till end 
taking care to preserve the single rib. 
Pattern reps every 2 stitches. (15 stitches)
Draw a thread with a sewing needle through the 
remaining 15 stitches and sew the seam of the cap 
keeping the right-side in. 
Reverse and you’re done!

Do you see that there are several repeating patterns 
in the shaping of this cap?
Every even-numbered (alternate row) is the same, 
and the focus is on keeping the single rib (the 
vertical pattern) continuous.

.....contd on next page
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Every odd-numbered row has a decreasing 
(number of reps and number of stitches) pattern 
which you can see in this table.

Original number of stitches:120

Row 
Num-

ber

Number of 
stitches in 
each rep

Number of stitches 
decreased (number of 
times the pattern reps)

Remaining 
number of 

stitches

1 8 15 105

3 7 15 90

5 6 15 75

7 5 15 60

9 4 15 45

11 3 15 30

13 2 15 15

Here are some questions!
•	 Why do you think the original number of stitch-

es was 120?
•	 Would it work with 130 stitches?
•	 How can you make a bigger cap?
•	 What would you change?

This is the compressed pattern.
Shaping the cap: Call (K1, P1) Block 1 and let 
n be the number of reps, s be the number of 
stitches in each rep.
Set n = 3.

Rows 1, 5, 9, 13:*(K2 together, Block 1 (n reps)) 
continue from * till end. 
Number of stitches in each rep: 2n + 2. 
Set n = n – 1
Rows 2, 4, 6, 8, 10, 12: Continue the vertical 
single rib pattern- no decrease.

Rows 3, 7, 11:*(K2 together, Block 1, (n reps), 
K1) continue from * till end. 
Number of stitches in each rep: 2n+3. 

Draw a thread with a sewing needle through 
the remaining 15 stitches and sew the seam of 
the cap keeping the right-side in.
Reverse and you’re done!

Reference: 1] https://classic.csunplugged.org/books/ 
1.	 (https://youtu.be/1vm6oaYzHyA) 

(https://www.youtube.com/watch?v=Egp4NRhlMDg), the basic Knit and Purl stitches 
(https://www.youtube.com/watch?v=7ePhLqw6HDM) 
(https://www.youtube.com/watch?v=VSwjIUiQZlM), casting on and casting off stitches
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A ‘Mean’ Question

In the first three parts of this series, we unpacked
the median and the mode formulas. Comparatively the
formula for the mean is easier to understand and not as

counter intuitive. However, while computing it for grouped
data, we use the midpoints of the class intervals and compute
the mean as if all data in each class interval is exactly the
midpoint. Consider Table 1.

Class Intervals Midpoints Frequencies Data values Frequencies

0 – 10 5 5 5 5

10 – 20 15 10 15 10

20 – 30 25 25 25 25

30 – 40 35 30 35 30

40 – 50 45 20 45 20

50 – 60 55 10 55 10

Total 100 100

Table 1 Table 2

The mean is computed as (5 × 5 + 15 × 10 + 25 × 25 +
35 × 30 + 45 × 20 + 55 × 10)/100. This is identical to
computing the mean for the ungrouped data given in Table
2. Note that the actual data for the class interval 0-10 can be
1, 1, 2, 2, 4 (adding up to 10) or 5, 6, 8, 8, 9 (adding up to
36). But we are assuming that they sum to 5 × 5 = 25.
Since we can’t get the actual data values in each interval, we
must approximate. So, why do we choose the midpoints?
This article tries to unpack that.

1
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But before answering that question, we considered two models of mean and could link the two for
ungrouped data. The two models are (i) the fair-share model and (ii) the fulcrum model. In the fair-share
model, the data values are all pooled together and then shared equally. Here is an example: 10 couples
who are also parents were surveyed for number of children. Figure 1 shows the no. of children for each of
these couples (C1, C2 … C10). So, there are six couples with one child, viz., C1, C2, … C6; three couples
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these couples (C1, C2 … C10). So, there are six couples with one child, viz., C1, C2, … C6; three couples
with two children, i.e., C7, C8 and C9 and the last couple C10 with four children.

Figure 1

No. of children No. of couples

1 6

2 3

3 0

4 1

Table . Figure 2

Now, in the fair-share model, all the yellow squares must be shared equally among the 10 couples. Then
the resulting common height of the rectangle for each couple is the ‘mean’. Figure 2 represents this mean
(calculated to be 1.6) with the rows and columns flipped, i.e., each row now represents a couple. [The
reason for the flip would become clear soon.] The pink parts have been redistributed to form the blue
parts, so they have equal areas. Also, the mean is the common length of each row after redistributing the
rectangles. So, the common length is the total yellow area redistributed equally among the rows, i.e., (6 ×
1 + 3 × 2 + 0 × 3 + 1 × 4) / 10 = 1.6. Now the total blue area is 6 × (1.6 – 1) and the total pink area
is 3 × (2 – 1.6) + 1 × (4 – 1.6) when computed row by row.

Compare this to the stick representation (Figure 3) illustrating the fulcrum of the distribution. Now, in
the fulcrum model, the ‘mean’ is where the fulcrum must be placed to balance the distribution (Figure 3
based on the frequency distribution given in Table 3). So, the total moments on either side of the fulcrum
must be equal.
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Figure 3 Figure 4

So, the total moment on the left of the fulcrum is indicated by the area of the blue rectangle, i.e., 6 ×
(1.6 – 1) in Figure 4. The height of each rectangle is the frequency while the base of each one is the
difference ‘mean – data value’. Similarly, the total moment on the right is given by the areas of the two
pink rectangles, i.e., 3 × (2 – 1.6) and 1 × (4 – 1.6). Again, the heights are the frequencies, but the bases
are ‘data value – mean’. However, to combine the areas in one formula, we need to write them as ‘data
value - mean’ (or ‘mean - data value’) for each rectangle. Therefore, in Figure 4, since the data value = 1 <
1.6 = the mean, ‘data value - mean’ is negative. Thus, the area of the blue rectangle can be considered to
be negative. Note that this area is of equal magnitude to the total pink area. In other words, 6 × (1.6 –
1) = 3 × (2 – 1.6) + 1 × (4 – 1.6). Also observe the following:

• The blue rectangle AGJD in Figure 4 has the same area (3.6) as that of all the blue rectangles in
Figure 2. In fact, if the blue rectangles are lined up by removing the gaps among them, then they
would form the same blue rectangle AGJD.

• The pink rectangle GCFH in Figure 4 has the same area (2.4) as all the pink rectangles in top row
of Figure 2. They in fact have the same dimensions.

• The pink rectangle GBEI in Figure 4 has the same area (1.2) as all the remaining pink rectangles in
rows 7-9 in Figure 2. Like the blue one, if the pink rectangles are joined by removing the gaps
among them, then they would form a rectangle with the same dimension as GBEI.

So, combining Figures 2 and 4, we observe that the fair-share and the fulcrum model have a deep
connection. [This is why we flipped the graph in Figure 2.] We strongly encourage the reader to try to
recreate Figure 2 and Figure 4 with any ungrouped data in order to understand this connection.

Algebraically speaking, if x1, x2 … xk are the data values with frequencies f 1, f 2 … fk respectively then the
fulcrum is located at ‘m’ if the total moment from ‘m’ is 0, i.e.,

∑k
i=1 fi (xi − m) = 0. Note that this

generates m =

∑k
i=1 fixi∑k
i=1 fi

which is the same formula derived from the fair-share model. For the above
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example, this is 6 (1 − m) + 3 (2 − m) + 1 (4 − m) = 0, which reduces to 6 × 1 + 3 × 2 + 1 × 4 =

(6 + 3 + 1)m, i.e., m =
6 × 1 + 3 × 2 + 1 × 4

6 + 3 + 1
=

16
10

= 1.6, i.e., what we got earlier.

However, for a grouped frequency distribution, it is impossible to know the individual data values as
mentioned earlier. So, fair-share model can’t be applied directly. However, the fulcrum model can be
adopted. Instead of a stick diagram as in Figures 3 and 4, we would use the histogram and the fulcrum
would be the point where it can be balanced.

Figure 5

Let us consider the histogram corresponding to the grouped frequency distribution given in Table 1
(Figure 5). Now we can think of the corresponding step function f (x) as follows (Figure 6):

f (x) = 0 for x < 0

= 5 = f1 for 0 ≤ x < 10

= 10 = f2 for 10 ≤ x < 20

= 25 = f3 for 20 ≤ x < 30

= 30 = f4 for 30 ≤ x < 40

= 20 = f5 for 40 ≤ x < 50

= 10 = f6 for 50 ≤ x < 60

= 0 for x ≥ 60 Figure 6

Then the sum for total moment becomes this integral

∫ 60

0
f (x) (x − m) dx =

6∑
i=1

∫ 10i

10(i−1)
fi (x − m) dx = 5 ×

∫ 10

0
(x − m) dx + 10 ×

∫ 20

10
(x − m) dx + 25

×
∫ 30

20
(x − m) dx + 30 ×

∫ 40

30
(x − m) dx + 20 ×

∫ 50

40
(x − m) dx + 10 ×

∫ 60

50
(x − m) dx.

So, mean is ‘m’, the value that makes this integral zero.
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Now, any general integral of this form, i.e.,
∫ b

a (x − m) dx =
[(

b2

2
− bm

)
−

(
a2

2
− am

)]
=

b2 − a2

2
−

(bm − am) = (b − a)
(a + b

2
− m

)
using b2 − a2

2
= (b − a) a + b

2
. Note that b – a = 10 = common

class width for each of these integrals.

So, this integral becomes

= 10
{

5
[
10 + 0

2
− m

]
+ 10

[
20 + 10

2
− m

]
+ 25

[
30 + 20

2
− m

]
+ 30

[
40 + 30

2
− m

]

+20
[
50 + 40

2
− m

]
+ 10

[
60 + 50

2
− m

]}

= 10 × {5 [5−m] + 10 [15−m] + 25 [25−m] + 30 [35−m] + 20 [45−m] + 10 [55−m]} .

So, the integral is 0 if and only if

5 [5−m] + 10 [15−m] + 25 [25−m] + 30 [35−m] + 20 [45−m] + 10 [55−m] = 0. . . (1)

which is possible if and only if

m =
5 × 5 + 10 × 15 + 25 × 25 + 30 × 35 + 20 × 45 + 10 × 55

5 + 10 + 25 + 30 + 20 + 10
=

3300
100

= 33. . . (2)

Note that (1) is exactly like
∑k

i=1 fi (xi − m) = 0 while (2) resembles m =

∑k
i=1 fixi∑k
i=1 fi

; both corresponding

to the ungrouped distribution in Table 2 represented in Figure 7 by the stick representation. Note that the
sticks are at the midpoint of each class interval and share the same height (i.e., frequency).

So, generally, when we consider the histogram of a grouped frequency distribution, the sum for total
moment becomes the area under the histogram which is the integral

∫ xk
x0

f (x) (x − m) dx =∑k
i=1

∫ xi

xi−1
fi (x − m) dx =

∑k
i=1 fi ×

∫ xi

xi−1
(x − m) dx where x0 – x1, x1 – x2 … xk−1 – xk are the class

Figure 7
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intervals with frequencies f 1, f 2 … fk respectively where the mean is that value of ‘m’, which makes this
integral zero. Therefore, the integral becomes

=

k∑
i=1

fi ×
∫ xi

xi−1

(x − m) dx =
k∑

i=1

fi
[(

xi
2

2
− mxi

)
−

(
xi−1

2

2
− mxi−1

)]

=
k∑

i=1

fi (xi − xi−1)

[
xi + xi−1

2
− m

]

= h ×
k∑

i=1

fi
[

xi + xi−1

2
− m

]

where h is the class interval (which is usually the same for all classes).

Now, xi + xi−1

2
= yi is nothing but the midpoint of the class interval xi−1 – xi for i = 1, 2 … k. So, the

integral becomes h ×
∑k

i=1 fi (yi − m) which is similar to ungrouped frequency distribution with the
midpoints y1, y2 … yk as the data values. This converts the histogram into a stick representation.

Note that if we find the fulcrum for each class, then that is also the midpoint of each class by the
symmetry of rectangles. This can also be arrived at with integration.

It is interesting to observe that while the formulas for median and mode for grouped data looked very
complicated, they required nothing beyond Class 10 syllabus to decipher. However, a much simpler
looking process for calculating mean for group data requires a much more sophisticated tool like
integration to understand it.

Math Co-dev Group or more elaborately Mathematics Co-development Group is an internal initiative of Azim Premji Foundation 
where math resource persons across states put their heads together to prepare simple materials for teachers to develop their 
understanding on different content areas and how to transact the same in their classrooms. It is a collaborative learning space 
where resources are collected from multiple sources, critiqued and explored in detail. Math Co-dev Group can be reached through 
ashish.gupta@azimpremjifoundation.org

(Use this fact to solve the puzzle on Page 31)
Triangle Area 
Fact



49Azim Premji University At Right Angles, July 2022

Pr
o

b
le

m
 C

o
rn

er

It is well-known that there are infinitely many prime
numbers. The ‘Twin Prime Conjecture’ states that there
are infinitely many primes p for which p + 2 is prime.

We define a special class of prime numbers as follows and
state a conjecture about them:

Definition 1. A prime number p is a Krishnan prime if both
p + 2 and p2 + 4 are prime numbers.

For example, 3 is such a prime, since 3 + 2 = 5 and
32 + 4 = 13 are both prime numbers. There are 22 Krishnan
prime numbers below 10000:

3, 5, 17, 137, 347, 827, 2087, 2687,
3557, 3917, 4517, 4967, 5477, 5657, 5867, 6827,
7457, 7547, 7877, 8087, 8537, 8597.

Conjecture (Sasikumar). There are infinitely many Krishnan
primes.

1

Keywords: Prime number, strong prime, Krishnan prime, twin 
primes

A Special Class of  
Strong Prime Numbers – 
Krishnan’s Primes
SASIKUMAR
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Discussion
Definition 2. A prime number pn is said to be strong (see [1]) if it is greater than the arithmetic mean of
its nearest prime neighbours, i.e., if pn >

1
2(pn−1 + pn+1).

The first few strong primes are the following:

11, 17, 29, 37, 41, 59, 67, 71, 79, 97,
101, 107, 127, 137, 149, 163, 179, 191, 197, 223,
227, 239, 251, 269, 277, 281, 307, 311, 331, . . .

Our aim is to show that all Krishnan primes > 5 are strong. For that we start with a lemma:

Lemma. Let p be a Krishnan prime greater than 5. Then the last digit of p is 7.

Proof. Let p be a Krishnan prime greater than 5; then p ≥ 17. We write

p = a0 + 10a1 + 102a2 + · · ·+ 10nan

for some natural number n. Since p ≥ 17, a0 ̸= 0, 2, 4, 5, 6, 8, and a1 ≥ 1.

Since p + 2 is prime, a0 ̸= 3 (else p + 2 will be divisible by 5 and so cannot be a prime number since
p ≥ 17).

Next, p2 + 4 = an102n + · · ·+ a2
0 + 4 ≥ 293 is a prime number (by definition), so a0 ̸= 1, 9. Hence

a0 ̸= 0, 1, 2, 3, 4, 5, 6, 8, 9. Therefore a0 = 7. That is, the last digit of a Krishnan prime beyond 5 is 7.

Now we prove our main theorem:

Theorem. A Krishnan prime greater than 5 is a strong prime number.

Proof. Let p > 5 be a Krishnan prime. By the lemma we know that p − 3, p − 2, p − 1 and p + 1 cannot
be prime numbers. Let q and r be respectively the prime numbers just preceding and just succeeding p.

By the definition of p, we know that p + 2 is prime, so we conclude that r = p + 2.

Since p − 3, p − 2 and p − 1 are not prime, we conclude that q < p − 2. Hence q + r < 2p, i.e.,
p > (q + r)/2. Hence a Krishnan prime greater than 5 is a strong prime number. □

Conclusion. The set of Krishnan primes greater than 5 is a subset of the class of strong primes.

References
1. Wikipedia, “Strong prime”, from https://en.wikipedia.org/wiki/Strong_prime

2. Tom M Apostol, Introduction to Analytic Number Theory, Springer (2010)
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In high school mathematics, we come across the topic
of factorisation of polynomials with integer or rational
coefficients. Usually, we only consider factorisation of

polynomials of low degrees. Checking whether or not a
polynomial of higher degree such as X 37 − 27X 11 + 3 is
factorisable turns out to be a difficult problem. Although
there are some methods available in higher mathematics to
deal with such problems, the tools and techniques of high
school mathematics seem to be of little use for addressing
such problems. In this article, we discuss the factorisation of
a particular infinite family of polynomials of arbitrary degree.

Statement of the problem
In [1], it is shown that for any integer n ≥ 1 and distinct
integers a1, a2, . . . , an, the polynomial

(X − a1)(X − a2) · · · (X − an)− 1 (1)

is not factorisable. It is interesting to note that if we consider
a variant of this polynomial, namely

(X − a1)(X − a2) · · · (X − an) + 1, (2)

then the polynomial is sometimes factorisable. For instance
we have:

(X − 3)(X − 5) + 1 = (X − 4)2.

1

Keywords: Polynomial, factorisation, integer, rational, coefficient, 
degree

On a Generalization of a 
Problem on Factorisation
SIDDHARTHA SANKAR 
CHATTOPADHYAY
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However, keeping +1 in place of −1, we can show that a large number of such polynomials are not
factorisable. More precisely, we prove the following theorem.

Theorem 1. Let n ≥ 1 be an integer and let a1, a2, . . . , an be distinct odd integers. Then the polynomial

f(X) = (X − 2)(X − a1)(X − a2) · · · (X − an) + 1 (3)

is not factorisable over the integers.

Remark 1. The presence of the factor (X − 2) in Theorem 1 is crucial, otherwise the following serves as a
counter-example:

(X − 3)(X − 5) + 1 = (X − 4)2.

Remark 2. As n is an arbitrary positive integer, the degree of f can be made arbitrarily large. Since the integers
a1, . . . , an vary over the odd natural numbers, these polynomials form an infinite family.

Proof of Theorem 1. If possible, suppose that

f(X) = (X − 2)(X − a1)(X − a2) · · · (X − an) + 1

is factorisable over the integers. Let f(X) = g(X)h(X) for some two polynomials g and h with integer
coefficients. We note that

f(2) = f(a1) = . . . = f(an) = 1.

Consequently, we have

g(2)h(2) = g(a1)h(a1) = . . . = g(an)h(an) = 1. (4)

Since g and h are polynomials with integer coefficients, g(2), h(2), g(a1), h(a1), . . . , g(an), h(an) are all
integers. Therefore, from (4),

g(2) = h(2) = ±1,

g(ai) = h(ai) = ±1 for all i ∈ {1, . . . , n}.

}
(5)

Let P(X) = g(X)− h(X). Then P is a polynomial with integer coefficients, and P(2) = P(ai) = 0 for all
i ∈ {1, . . . , n}. Now,

degP(X) = deg(g(X)− h(X))
≤ max{deg(g(X)), deg(h(X))}
< deg(f(X)) = n + 1.

This means that P(X) is a polynomial of degree < n + 1, having at least n + 1 distinct zeros (namely,
2, a1, . . . , an). Hence P(X) is identically zero, which implies that g(X) = h(X).

Therefore, the relation f(X) = g(X)h(X) becomes f(X) = (g(X))2.

Let g(0) = k. Then from the equation f(X) = (g(X))2, we get f(0) = (g(0))2 = k2. That is,

(−1)n+1 · 2 · a1a2 · · · an + 1 = k2.
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Since the ai are all odd integers, k is odd. Hence k2 − 1 = (k − 1)(k + 1) is divisible by 8 (as it is the
product of two consecutive even integers). This implies that (−1)n+1 · 2 · a1a2 · · · an is divisible by 8,
which is not possible as all the ai are odd.

This contradiction shows that the stated factorisation is not possible.

This completes the proof of Theorem 1. □
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A magician places some coins in a tray and calls a member of his audience on stage to support his 
act. He asks the spectator to take fewer than 10 coins in his right fist (he always looks away when the 
coins are taken).

Now he asks the spectator to count the remaining coins and find the sum of the digits of this number. 
(For example, if there are 13 coins remaining then the sum of the digits is 4.)

Now the magician tells the spectator to take as many coins as the sum of digits from the tray, again 
into his right fist. Then he asks him to take any number of coins from the remaining coins in the tray 
into his left fist. 

The magician turns back to the tray and tells the audience how many coins the spectator has in his left 
and right fists.

And he is right! 

How did he do this trick? (See page 74 for the magic behind this trick)

Contributed by: Kalpesh Akhani (Asst.Teacher)

A Magic Trick
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In Prithwijit De’s article in the July 2021 issue of
At Right Angles (page 59), Jerry had asked Tom the
following question:

Problem 1. Let S = {1, 2, 3, 4, 5, 6, 7, 8, 9}. Find all triples
a, b, c ∈ S with a < b, c ̸= a, c ̸= b, such that the following
is true for all integers n ≥ 0:

a
b
=

n︷ ︸︸ ︷
ccc . . . cc a
b ccc . . . cc︸ ︷︷ ︸

n

. (1)

(Here,
n︷ ︸︸ ︷

ccc . . . cc a denotes the (n + 1)-digit number whose
first n digits are c and last digit is a. Similarly, b ccc . . . cc︸ ︷︷ ︸

n
denotes the (n + 1)-digit number whose first digit is b and
last n digits are c.)

Tom is still looking for an answer!

I had written to Tom, stating that Problem 1 has no
solutions. Tom, in response, decided to pose a problem of his
own and wrote the following on the board.

1

Galaxy of Unit Fractions 
with Tom and Jerry
ADITHYA RAJESH

Keywords: Unit fractions, base, recurring decimal
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Challenge 1.

1
3
= 0.01,

1
5
= 0.0011,

1
9
= 0.000111, . . .

Can you identify the pattern and verify if this relationship is true for all integers n ≥ 0?

Here the line over the ‘decimal’ indicates the recurring pattern: 0.01 means 0.01 01 01 01 . . .; 0.0011
means 0.0011 0011 0011 0011 . . .

Jerry could easily sort out the pattern on the LHS as 1
2n+1 but could not get things right on the RHS. But

he had trained under Tom and knew all about his tactics. He was intensely observing the pattern to find
the missing link.

Voila! He got it! The missing link is the base system. Tom had intentionally avoided mentioning that he
was using the binary base system. (To understand non-decimal number bases better, the reader could refer
to the ‘Pullout’ of the March 2022 issue of At Right Angles.) Quickly coming up with the proof was now a
piece of cheesecake for Jerry.

Proof. We consider a typical positive integer, say n = 3. We wish to prove that

1
23 + 1

= 0.000111 (in base 2). (2)

Let x = 0.000111 in base 2. Then we have 8x = 0.111000 (remember that in base 2, multiplication by 8
results in moving the ‘decimal point’ 3 places to the right, just like what multiplication by 1000 does in
base 10). Hence by addition we get

9x = 0.000111 + 0.111000 (in base 2)

= 0.111111 = 0.1 (in base 2)
= 1. (Comment. This is the base 2 equivalent of the base 10 relation 0.99999 . . . = 1.)

Therefore x = 1
9 . This shows that (2) is true.

Though we have written the solution only for the case n = 3, this approach clearly works for all integers
n ≥ 0. □
Jerry did not stop with this finding but did some more research and extended this result to other bases:

1
2n + 1

= 0.000 . . . 00︸ ︷︷ ︸
n

111 . . . 11︸ ︷︷ ︸
n

(in base 2), (3)

1
3n + 1

= 0.000 . . . 00︸ ︷︷ ︸
n

222 . . . 22︸ ︷︷ ︸
n

(in base 3), (4)

1
4n + 1

= 0.000 . . . 00︸ ︷︷ ︸
n

333 . . . 33︸ ︷︷ ︸
n

(in base 4), . . . (5)
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and:

1
8n + 1

= 0.000 . . . 00︸ ︷︷ ︸
n

777 . . . 77︸ ︷︷ ︸
n

(in base 8), (6)

1
10n + 1

= 0.000 . . . 00︸ ︷︷ ︸
n

999 . . . 99︸ ︷︷ ︸
n

(in base 10), (7)

1
16n + 1

= 0.000 . . . 00︸ ︷︷ ︸
n

FFF . . . FF︸ ︷︷ ︸
n

(in base 16), . . . (8)

and so on.

Tom was unable to trap Jerry now and tried to challenge Jerry with a new question:

Challenge 2.

What is the corresponding relationship when +1 is replaced by −1 in the above relations (for all
integers n ≥ 0)?

Jerry in a split-second gave the following answer:

1
2n − 1

= 0.000 . . . 00︸ ︷︷ ︸
n−1

1︸︷︷︸
1

(in base 2), (9)

1
10n − 1

= 0.000 . . . 00︸ ︷︷ ︸
n−1

1︸︷︷︸
1

(in base 10), (10)

and in general:

1
bn − 1

= 0.000 . . . 00︸ ︷︷ ︸
n−1

1︸︷︷︸
1

(in base b), (11)

for any base b > 1.

Proof. The proof was very simple for Jerry. We consider a typical positive integer, say n = 3. We wish to
prove that

1
23 − 1

= 0.001 (in base 2). (12)

Let y = 0.001 in base 2. Then we have 2y = 0.010 and 4y = 0.100 (remember that in base 2,
multiplication by 2 results in moving the ‘decimal point’ 1 place to the right, and multiplication by 4
results in moving the ‘decimal point’ 2 places to the right). Hence by addition we get

y + 2y + 4y = 0.111 = 0.1,

i.e., 7y = 1. Hence y = 1
7 , so (12) is true. □
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Jerry then came up with the following generic table where b is the base:

b
1

bn + 1
1
bn

1
bn − 1

2 0.000 . . . 00︸ ︷︷ ︸
n

111 . . . 11︸ ︷︷ ︸
n

0. 000 . . . 00︸ ︷︷ ︸
n−1

1︸︷︷︸
1

0.000 . . . 00︸ ︷︷ ︸
n−1

1︸︷︷︸
1

3 0.000 . . . 00︸ ︷︷ ︸
n

222 . . . 22︸ ︷︷ ︸
n

0. 000 . . . 00︸ ︷︷ ︸
n−1

1︸︷︷︸
1

0.000 . . . 00︸ ︷︷ ︸
n−1

1︸︷︷︸
1

10 0.000 . . . 00︸ ︷︷ ︸
n

999 . . . 99︸ ︷︷ ︸
n

0. 000 . . . 00︸ ︷︷ ︸
n−1

1︸︷︷︸
1

0.000 . . . 00︸ ︷︷ ︸
n−1

1︸︷︷︸
1

And in general, for base b > 1:

1
bn + 1

= 0.000 . . . 00︸ ︷︷ ︸
n

(b − 1)(b − 1)(b − 1) . . . (b − 1)(b − 1)︸ ︷︷ ︸
n

,

1
bn = 0. 000 . . . 00︸ ︷︷ ︸

n−1

1︸︷︷︸
1

,

1
bn − 1

= 0.000 . . . 00︸ ︷︷ ︸
n−1

1︸︷︷︸
1

.

Now it was Jerry’s turn to revert. He posed the following challenge to Tom:

Challenge 3.

Can the relationship in the table be extended to non-unit fractions in base k (k ≥ 2), i.e., to fractions
whose numerator is not 1?

Tom is now looking to the readers to provide an answer.

Acknowledgements. I thank my mentor Rajesh Sadagopan (Director, Aryabhatta Institute) for providing
guidance in writing this article. I thank my sister and mother for helping me edit this article.
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Day 1
Our maths teacher, Krittika Ma’am, gave us a very interesting
topic to work on. She gave us a few patterns like this . . . .

1. 82 − 72 = 15

2. 42 − 32 = 7

3. 132 − 122 = 25

4. 102 − 92 = 19. . .
and told us to find a pattern between the LHS and RHS. We
quickly figured out that we just need to add up the numbers
to get to RHS. She pointed out that what we had on the
LHS was a difference of squares of consecutive numbers
(where the gap between the numbers is 1).

Day 2
Ma’am told us to work with a difference of squares where the
gap is 2 instead of 1 and then with 3, and so on. We had to
find a rule which holds true for all the cases. So, we all put
on our thinking caps and came up with two different ideas.

Observations by the class. The difference of two squares is
always the product of their sum and their difference.

∴ a2 − b2 = (a + b)(a − b)

1

A New Way of Looking 
at the Difference-of- 
Two-Squares Identity
BEDANTO 
BHATTACHARJEE & 
RIDDHI SARKAR
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Example:

(i) 82 − 62 = (8 − 6)(8 + 6) = 2 × 14 = 28

(ii) 132 − 122 = (13 − 12)(13 + 12) = 1 × 25 = 25

(iii) 42 − 22 = (4 − 2)(4 + 2) = 2 × 6 = 12

(iv) 102 − 52 = (10 − 5)(10 + 5) = 5 × 15 = 75

Observations by Bedanto and Riddhi (for examples 1 & 3)

Bedanto Riddhi

(i) 82 − 62 = 2 × (8 − 6) × (8 − 1) =
2 × 2 × 7 = 28

(iii) 42 − 22 = 2 × (4 − 2) × (4 − 1) =
2 × 2 × 3 = 12

(i) 82 − 62 = 2 × (8 − 6) × (6 + 1) =
2 × 2 × 7 = 28

(iii) 42 − 22 = 2 × (4 − 2) × (2 + 1) =
2 × 2 × 3 = 12

We then understood that we were arriving at the same product.

Now we tried our theory with the other examples, but we saw that they were not working.

For eg- 132 − 122 ̸= 2 × (13 − 12) × (13 − 1); Also 132 − 122 ̸= 2 × (13 − 12) × (12 + 1);

∴ We had to generalize it. We observed that in example (i) 8 − 1 = 6 + 1 and in (iii) 4 − 1 = 2 + 1

We realised, 82 − 62 = 2 × (8 − 6) × (6 + 1) = 2 × difference × mean

And 42 − 22 = 2 × (4 − 2) × (4 − 1) = 2 × difference × mean

After we had a generalized form, we tested our theory with other examples-

∴ (ii) 132 − 122 = 2 × difference × mean = 2 × (13 − 12)× (12.5) = 25

(iv) 102 − 52 = 2 × difference × mean = 2 × (10 − 5)× (7.5) = 75

So, our conclusion was that- For, the difference of two squares, the difference is always twice the product
of their difference and their mean.

∴ a2 − b2 = 2 × (a − b)× (mean of a and b)

We had a question to answer! How are the two methods related?

One of our classmates, Anurag, figured it out. . . Identity the class arrived at:

a2 − b2 = (a + b)(a − b)

Our method-

a2 − b2 = 2 × (a − b)× (mean of a and b) = 2 × (a − b)
(

a + b
2

)
= (a + b)(a − b)

BEDANTO BHATTACHARJEE (8B) & RIDDHI SARKAR (8B) 
The Future Foundation School, Kolkata 
Email: krittika.hazra7@gmail.com
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A Pythagorean quadruple is a 4-tuple of positive integers
a, b, c, d such that

a2 + b2 + c2 = d2. (1)

In this article we will try to find a way to generate
Pythagorean quadruples.

Let d = a + m. Since (a + m)2 = a2 + 2am + m2, if we can
find integers such that

b2 + c2 = 2am + m2, (2)

then the relation a2 + b2 + c2 = d2 will be satisfied.

We consider separately the cases when b2 + c2 is odd and
when it is even.

Case 1: b2 + c2 is odd. Then one of b2 and c2 is odd and
other is even.

From (2) we get 2am + m2 = b2 + c2, hence

am =
b2 + c2 − m2

2
. (3)

Since b2 + c2 is odd, by assumption, m2 and therefore m is
odd.

1

Searching for 
Pythagorean Quadruples
ATHARV TAMBADE

Keywords: Pythagorean quadruple, 4-tuple, odd, even
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Next we have d = a + m, so dm = am + m2, and so

dm =
b2 + c2 − m2

2
+ m2 =

b2 + c2 + m2

2
. (4)

The quantity on the right side is not necessarily a multiple of m, so we scale up the 4-tuple (a, b, c, d) by a
factor of m. That is, we consider instead the 4-tuple (am, bm, cm, dm). We may now generate infinitely
many such 4-tuples (am, bm, cm, dm) using the identity

(
b2 + c2 − m2

2

)2

+ (mb)2 + (mc)2 =
(

b2 + c2 + m2

2

)2

. (5)

Example 1. Take b = 2, c = 5, m = 3. Then (5) yields:

102 + 62 + 152 = 192.

Example 2. Take b = 3, c = 8, m = 5. Then (5) yields:

242 + 152 + 402 = 492.

Case 2: b2 + c2 is even. Essentially the same analysis works here too; we use identity (5) again. The only
difference is that m must now be an even integer. If both b and c are even, then there will be a common
factor which can be divided out from the 4-tuple.

Example 3. Take b = 3, c = 7, m = 4. Then (5) yields:

212 + 122 + 282 = 372.

Example 4. Take b = 3, c = 11, m = 8. Then (5) yields:

332 + 242 + 882 = 972.

Example 5. Take b = 4, c = 14, m = 10. Then (5) yields:

562 + 402 + 1402 = 1562.

We see that all the terms have a common factor of 4 which we may divide out. This yields:

142 + 102 + 352 = 392.

ATHARV TAMBADE is currently doing his B-Tech in engineering physics at IIT Bombay. He has a deep interest in 
both mathematics and physics. He has his own telescope which he uses for star gazing. He wishes to pursue a research-
oriented career in pure science. He is also an NTSE scholar. He may be contacted at atharvtambade@gmail.com.
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Problem. Suppose a is a real number such that
a5 − a3 + a = 2. Show that 3 < a6 < 4.

Solution. From a5 − a3 + a = 2 we obtain
a
(
a4 − a2

)
= 2 − a, i.e.,

a4 − a2 =
2 − a

a
. (1)

Again from a5 − a3 + a = 2 we obtain:

a6 − a4 + a2 = 2a. (2)

From (1) and (2) we obtain

a6 = 2a +
2
a
− 1. (3)

Therefore, a is the real root of the equation g(x) = f(x) where

g(x) = x6, f(x) = 2x +
2
x
− 1. (4)

1

Problem 61 from 
KVPY 2016
KIAN SHAH

Keywords: KVPY, continuous function, real root

In this note, we look 
at Problem 61 from 
the Kishore Vaigyanik 
Protsahan Yojana 
(KVPY) entrance 
examination of 
2016. Its statement 
is short, but finding 
a straightforward 
solution is a challenge. 
Here is a possible 
approach.
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Figure 1. Graphs of g and f, over the interval −1 < x < 2

Now note the following.

• For x > 0, both f(x) and g(x) are continuous functions.

• g(1) = 1, f(1) = 3, and g(2) = 64, f(2) = 4; so g(1) < f(1) while g(2) > f(2). Hence
1 < a < 2.

• The derivative of f(x) is

f′(x) = 2 − 2
x2 , (5)

which is strictly positive for x > 1. This implies that f(x) is an increasing function for x > 1. (We
can see this visually on the graph, but it needs to be verified rigorously. This can be done using the
derivative, as we have just done.)

• Therefore f(1) < f(a) < f(2), i.e., 3 < f(a) < 4.

• But by the definition of a we have f(a) = a6.

• Hence 3 < a6 < 4. □

About the Kishore Vaigyanik Protsahan Yojana (KVPY). For information about the KVPY, please refer
to http://www.kvpy.iisc.ernet.in/main/index.htm.

KIAN SHAH is currently studying in 12th grade in Sahyadri School, Pune. He has a passion for mathematics, 
especially number theory. Apart from that he has an active interest in physics and enjoys solving problems from 
both these subjects. His curiosity for science was sparked by flipping through books on the history of science. He 
also occasionally plays the guitar. He may be contacted at kian.shah@sahyadrischool.org.
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The Spaghetti Problem

The topic of probability forms an important part of 
the school mathematics curriculum. It is introduced 
in middle school and is revisited in detail in senior 

secondary school. Though the concepts of probability 
can be taught using practical examples, these are usually 
restricted to tossing of coins, rolling of dice and shuffling 
playing cards. There are many interesting problems, which 
can be introduced to enliven the teaching of probability and 
to enable students to explore the fundamental concepts. 
In this article we shall explore such a problem called The 
Spaghetti Problem using the spreadsheet MS Excel. 

In a previous article titled The Game of Craps, which 
appeared in the November 2019 issue, we explained the 
importance of simulations as a tool for modeling practical 
problems. In particular we mentioned Monte Carlo Simulation, 
a technique used to approximate the probability of 
outcomes of an experiment by running multiple trials 
generated by random numbers. Simple simulations of  
real world problems can be explored through spreadsheets 
such as MS Excel as these are equipped with inbuilt 
functions for generating random numbers.

The Problem
The problem is fairly simple and is stated as follows:
Let us assume that we are able to randomly break a spaghetti 
stick of length L into three pieces. What is the probability that 
the three pieces will form a triangle? 

It would be worthwhile to take a spaghetti stick, break 
it into three pieces and arrange them to form a triangle. 
This may be repeated a few times using different spaghetti 

Keywords: Probability, simulation, spreadsheets
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sticks. In some cases the three pieces will form a 
triangle, while in other cases they will not. 

Figure 1. A Spaghetti stick of length L, broken  
into three pieces, forms a triangle.

In order to estimate the probability, we will need 
to break a large number of spaghetti sticks, each 
time checking if the three pieces form a triangle. 
After a sufficiently large number of trials, we 
would be in a position to calculate the empirical 
probability of a triangle being formed. However, 
it would be tedious and impractical to keep 
breaking spaghetti sticks.  Simulation comes to 
the rescue here by allowing us to simulate the 
breaking of sticks using random numbers.

Before describing the process of simulation, let us 
analyse the problem mathematically.

Consider a stick of length L units, which is 
broken into three pieces. Let the length of the 
pieces be x units, y units and (L – x – y) units. 
The triangle inequality tells us that these three 
pieces will form a triangle if the sum of the lengths 
of any two pieces is greater than the third. This 
leads us to the following three inequalities.
x + y  >  L – x – y   or   x + y > L/2 (1)
x + (L – x – y) > y   or   y <  L/2  (2)
y +  (L – x – y)  >  x   or   x <  L/2 (3)

Also we observe that both x and y must lie 
between 0 and L. Let us consider the piece of 
length x units. If the stick is not broken at all, 
then x equals L units. If the stick is broken into 
two pieces, then one will be of length x units and 
the other will be y units. In this case x is less than 
L units. The same arguments may be repeated 

for the piece of length y units. This leads us to 
conclude that 0 < x, y < L. Thus, every time a 
spaghetti stick is broken into three pieces, an 
ordered pair of numbers (x, y) is generated which 
can be easily plotted as a point on the coordinate 
plane. Also since x and y are greater than 0, all 
these points will lie in the first quadrant. Now, 
the inequalities (1), (2) and (3) represent those 
ordered pairs (x, y) which lead to the formation 
of a triangle. Graphing the linear equations x + y 
= L/2, x + y = L, x = L/2 and y = L/2 in the first 
quadrant leads to Figure 2. 

Figure 2: Graphical representation of the linear 
equations arising out of Spaghetti Problem.

Every time a spaghetti stick is broken, the 
corresponding ordered pair (x, y) will lie on 
or within the triangle OAB. This is primarily 
because of the condition 0 < x, y < L. Now 
if we graph the inequalities (1), (2) and (3) 
simultaneously, the region common to them is 
represented by the triangle CDE. Hence, if we 
break a sufficiently large number of sticks such 
that their corresponding points (x, y) fill up 
triangle OAB, then the probability of a randomly 
broken stick (into three pieces) forming a triangle 
will be given by 

Area of triangle CDE/Area of triangle OAB

1 2  ×  L 2  ×  L 2
1 2  ×  L  ×  L

L2
 8 1

4L2
 2

= = =

The above analysis confirms that the theoretical 
probability of a spaghetti stick broken randomly, 
into three parts, forming a triangle is ¼. 
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The spreadsheet simulation
In order to compute the empirical probability 
of a triangle being formed out of a randomly 
broken spaghetti stick, we shall simulate it on 
MS Excel using its random number generator.

Let us assume that the length of the stick, L, 
equals 100 units. Suppose that the stick is 
broken into three parts of lengths a, b and c. 
We will use the RANDBETWEEN command 
to simulate the lengths a, b and c. Note that 
=RANDBETWEEN(1, n) generates a random 
integer between 1 and n.

The steps of simulation are as follows.

Step 1: We begin by creating a column of 
numbers from 1 to 100 in column A. Enter 1 in 
cell A2 and = A2 + 1 in cell A3. Take the cursor 
to the corner of cell A3 and drag till cell A101. 
This will create a column of numbers from 1 to 
100 (as shown in Figure 3) and will help us keep 
track of the simulations. 

                                                            

Figure 3: A column of numbers to indicate 
the number of simulations.

Step 2: We will generate two random numbers 
between 1 and 100 and call them X and Y. These 
represent the points at which the stick is broken. 
For this we enter =RANDBETWEEN(1, 100) in 
cells B2 and C2. The number in cell B2 represents 

X and that in C2 represents Y. Selecting cells B2 
and C2 simultaneously and double clicking on the 
corner of cell C2 generates 100 pairs of numbers X 
and Y.

Figure 4: The RANDBETWEEN command 
generates two numbers X and Y.

Step 3: The smaller of the two numbers X and Y 
may be assigned to a. To simulate this we enter 
the conditional formula

=IF(B2<C2, B2, C2) in D2  (to simulate the 
length of piece ‘a’) and double click in the corner 
of cell D2.

Figure 5: The conditional statement =IF(B2<C2, B2, C2) 
is used to simulate the piece of length ‘a’.
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Step 4: Once X or Y has been assigned to a, the 
difference X – Y or Y – X will be assigned to b. 
This can be achieved as follows

Enter =IF(B2<C2, C2-B2, B2-C2) in E2 (to 
simulate the length of piece ‘b’) and double click 
in the corner of cell E2.

Figure 6: The conditional statement =IF(B2<C2, C2-B2, 
B2-C2)  is used to simulate the piece of length ‘b’.

Step 5: Finally, to simulate the length of the 
third piece c, we enter =100 - (D2 + E2) in F2 
and double click in the corner of cell F2. Note 
that each row of the spreadsheet represents one 
broken spaghetti stick of length 100 units.

Figure 7: The piece of length ‘c’ 
is simulated in column F.

Step 6: We now have a simulation of 100 
spaghetti sticks, each broken into three pieces 
of lengths a, b and c. We need to identify those 
simulations in which a triangle is formed. The 

condition which we shall use is that a triangle 
will be formed only if the maximum length 
among a, b and c is less than 50 (half the length 
of the original stick).

Enter =IF(MAX(D2,E2,F2)<50, “YES”, “NO”) 
in G2 (to check if the triangle is formed). The 
output in cell G2 will be “YES” if a triangle is 
formed else it will be “NO”.

 

Figure 8: The conditional statement 
=IF(MAX(D2,E2,F2)<50, “YES”, “NO”) is used to  

verify if each row of the simulation represents the 
formation of a triangle.

Step 7: Finally we need to count the number 
of cases in which a triangle is formed  
(indicated by “YES” in column G) to compute 
the empirical probability. For this we enter 
=COUNTIF(G2:G101,”YES”)/100  in any cell, 
say J2.

The empirical probability = Number of broken 
spaghetti sticks which form a triangle / total 
number of spaghetti sticks that are broken 

Every time we click on a cell on the spreadsheet, 
a new set of 100 simulations of broken spaghetti 
sticks is generated. Each time, the value in cell J2 
gives us the empirical probability.

The reader may explore the problem by 
generating several sets of 100 simulations, each 
time computing the empirical probability of 
obtaining a triangle. In some cases the empirical 
probability may be less than 0.25 and in other 
cases it may exceed 0.25. It would be worthwhile 
to generate 1000 simulations (instead of 100) 
and compute the empirical probability. After 
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several simulations it will be evident that the 
value of the empirical probability gets closer to 
the theoretical probability, ¼, as the number of 
simulations increases.

An extension
A natural extension to the problem is to 
find the probability that a spaghetti stick of 
length L units, broken into four parts, forms a 
quadrilateral. We will analyse this situation using 
a method different from the three pieces case 
discussed in the previous sections of this article. 

Let us break the stick of length L into four 
pieces such that one piece is of length L/2 and 
the sum of the lengths of the other three pieces 
is L/2. Clearly these four pieces, when joined 
together, will not form a quadrilateral. In fact 
a quadrilateral will be formed only when the 
length of the largest piece is less than the sum of 
the other three pieces. Thus we need to find the 
probability that no piece (among the four pieces) 
has length greater than or equal to L/2.

To find the required probability let us consider a 
circle of circumference L units. (We may imagine 
that our spaghetti stick is bent into a circle.) Let 
the four broken parts of the stick be n1n2, n2n3, 
n3n4 and n4n1 and let the four points n1, n2, n3 
and n4 be randomly placed (in that order) on the 
circumference of the circle as shown in Figure 10. 

Note that the circumference of the circle can 
be divided into two semi-circles. If the four 
points n1, n2, n3 and n4 lie on the same semi-
circle then the four broken parts will not form a 
quadrilateral (as in such a case the length of the 
largest part will be greater than or equal to L/2). 
So, what is the probability of this happening?

Figure 10.  The circle represents a spaghetti stick broken 
into four parts n1n2, n2n3, n3n4 and n4n1.

Consider any one of the four points (say n1) 
and the diameter of the circle passing through 
it, which divides the circumference into two 
semi-circles (as shown in Figure 11). Now the 
probability of n2 lying on either semi-circle is 
½ each. Similarly the probabilities of n3 and n4 
lying on either semi-circle are also ½ each. Thus 
the probability that all three points, n2, n3 and n4 
lie on the same semi-circle is ½ × ½ × ½ = ⅛. Also, 
to begin with, we could have chosen any of the 
four points (n1, n2, n3 or n4) to draw a diameter 
and thus we have 4C1 = 4 choices.

Figure 9: The empirical probability of a triangle being formed in this set of 100 simulations is equal to 0.26.
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This leads to the conclusion that the probability 
of all four points lying on the same semi-circle 
(in which case a quadrilateral cannot be formed) 
is 4C1 × 1

23 = 1/2.

Hence, the probability that all four points do not 
lie on the same semi-circle (that is, a quadrilateral 
is formed) is 1 –  ½ = ½.

The Generalisation
We are now in a position to generalize the 
spaghetti problem. 

If a spaghetti stick is randomly broken into ‘n’ parts, 
what is the probability that these parts will form an 
n-sided polygon? 

Clearly (extending from the four parts case 
discussed in the previous section), the polygon will 
be formed if the length of the largest part is less 
than the sum of the remaining (n – 1) parts. Once 
again, to obtain the solution, we need to find the 
probability that none of the n parts is of length 
greater than or equal to L/2. We can randomly 
place the n points on the circumference of a circle 
(of perimeter L units) as shown in Figure 12.

The reader is urged to prove the following result: 

The probability that the n points (shown in 
Figure 12) lie on the same semicircle is 

nC1

2n – 1. 

Hence, the probability that these n points do not 
lie on the same semi-circle (and that the n broken 
parts form an n-sided polygon) is 1– 

nC1

2n – 1 .

This generalized formula is indeed useful. We 
can use it to verify the probability of the n = 3 
case (three spaghetti pieces form a triangle with 
probability 1/4) and the probability of the n = 4 
case (four spaghetti pieces form a quadrilateral 
with probability 1/2). The reader is encouraged 
to work out the probabilities for different values 
of n. It is interesting to note that as n increases, 
the probability of the n pieces forming an n-sided 
polygon also increases!

An interesting follow-up activity is to design 
a simulation of the n = 4 case on MS Excel 
and verify that the empirical probability of 
a quadrilateral being formed approaches the 
theoretical probability ½ as the number of trials 
increases. Students of secondary and senior 
secondary school can easily explore this problem. 
Students of grades 9 and 10 will be able to 
appreciate the initial analysis of the n = 3 case using 
the triangle inequality and also the spreadsheet 
simulation. Students of grades 11 and 12 with a 
stronger grounding in probability, are likely to be 
curious about the n = 4 case and the generalization 
of the problem. The discussion of the general case 
is well within the reach of most students.

Figure 11. The diameter of the circle passing through n1 
divides the circumference into two semi-circles.

Figure 12. The circle represents a spaghetti stick 
randomly broken into n parts. The diameter through  

any one of the n points divides the circumference 
into two semi-circles.
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Integrating Computational thinking and 
Mathematical Thinking
In recent years computational thinking (CT) 
has been identified as one of the key analytical 
abilities required for mathematics and science 
learning. The rapidly changing nature of 
scientific and mathematical disciplines and the 
need to prepare students for careers in these 
disciplines have been the primary motivation for 
bringing computational thinking into classroom 
practices. While many definitions of CT may be 
found in the literature, Seymour Papert [5,6,7] 
was the first to emphasise the importance of 
computational thinking and its connection to 
mathematics learning. Papert vividly talked 
about children using computers as instruments 
for learning and for enhancing creativity, 
innovation, and was actually responsible for 
"concretizing" the term computational thinking. 
With turtle geometry and logo programming 
he introduced a computational style of 
learning geometry. Later, in 2006, the term 
computational thinking was greatly popularized 
by Jeanette Wing [9] in her seminal article in 
which she advocated that

Computational thinking is a fundamental 
skill for everyone, not just for computer 
scientists. To reading, writing, and arithmetic 
(the three R’s), we should add computational 
thinking to every child’s analytical ability.

She further elaborated on what encompasses 
computational thinking. According to her

Computational thinking involves solving 
problems, designing systems, and 
understanding human behavior, by drawing 
on the concepts fundamental to computer 
science. Computational thinking includes a 
range of mental tools that reflect the breadth 
of the field of computer science.

Weintrop et.al. [8] attempt to define 
computational thinking in the context of 
school mathematics and science education and 
also suggest a theoretical grounding for the 
same. They propose a taxonomy comprising 

four categories: data practices, modeling and 
simulation practices, computational problem 
solving practices and systems thinking practices. 
All definitions or frameworks that define CT 
emphasise a certain set of skills. These include 
the ability to deal with challenging problems, 
representing ideas in computationally meaningful 
ways, creating abstractions for the problem at 
hand, breaking down problems into simpler 
ones, assessing the strengths and weaknesses 
of a representation system and engaging in 
multiple paths of inquiry. These skills are also 
critical for mathematics learning and there is a 
common consensus on the understanding that 
CT skills have to be developed in mathematics 
classrooms right from the early school years. It 
is also evident that among all school subjects, 
mathematics can provide ample contexts to 
integrate CT and computation and can in 
turn enrich mathematics learning through 
technology. Mathematical thinking (MT) skills 
and Computational thinking (CT) practices are 
distinct and yet mutually supportive.

However, operationalizing CT in mathematics 
classrooms is a pedagogical challenge. It requires 
identifying tasks that are both mathematically 
and computationally rich – tasks that allow 
students to explore concepts, develop and 
employ CT practices and also foster MT. Digital 
tools such as dynamic software, computer 
algebra systems and spreadsheets can play a 
significant role in mediating CT and MT.  In 
fact spreadsheets can be very powerful tools 
for CT-MT based explorations as they can aid 
in identifying patterns, generating graphical 
representations and creating simulations. They 
are very suited for the inquiry based approach 
to learning and do not require high level 
coding skills.  The spaghetti problem and other 
similar problems, which connect to various 
topics in the mathematics curriculum and are 
amenable to exploration via simulations, can be 
easily modeled on spreadsheets. The Spaghetti 
problem exploration may be divided into three 
stages. We may identify the role of MT and CT 
in each of these stages.
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1. Visualising the problem: Applying the triangle 
inequality to model the problem and 
arriving at the inequalities (1) to (3) requires 
MT whereas modifying the problem for 
simulating it on the spreadsheet entails CT.

2. Solving the problem: Graphing the 
inequalities (1) to (3), arriving at the feasible 
region and computing the theoretical 
probability requires MT while simulating 
the problem on the spreadsheet (using 
random number generators and conditional 
statements) to obtain the empirical 
probability entails CT.

3. Generalising the problem: Extending the 
problem to 4 or n pieces and calculating the 
theoretical probability entails MT whereas 
extending the spreadsheet simulation to larger 
number of pieces requires CT.

We are now in a position to claim that 
exploration of the Spaghetti problem and other 
similar problems can help to foster both CT 
and MT. The reader is encouraged to read the 
articles The Birthday Paradox [3] and The Monty 
Hall Problem [4], which appeared in earlier issues 
of the magazine, to deliberate on possibilities 
offered by these problems for integration of CT 
and MT in the mathematics classroom.
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Rethinking Mathematics: 
Teaching Social Justice 
by the Numbers

Reviewed by Prof. Parvin Sinclair

The first edition of the book under review was published 
in 2005[2], as part of the series, ‘Rethinking Schools’. 
This was the same year that a new National Curriculum 

Framework (NCF) [3] was brought out in India. This NCF 
propagated the constructivist view of learning, which was a 
radical shift for most of the Indian schooling system and for 
Indian society. The NCF also stressed the fact that no learning 
is culture-free, including mathematics learning. This perspective 
has been spelt out by several other authors (e.g., see [1] and [4]). 
Rethinking Mathematics follows the same philosophy of learning. 
Of course, there have been many books and articles written across 
the world in the last few decades propagating the constructivist 
view of mathematics teaching. But this book goes a step further. 
The different points discussed in the chapters pertain specifically 
to examples built around various aspects of social and economic 
inequity. Through these articles, we see active embedding of social 
justice issues in the math teaching-learning process. 

The articles in this compendium focus on helping teachers 
develop and transact a critical mathematics education curriculum 
intertwining mathematics with social justice. The contributors 
are mathematics student teachers, experienced teachers, teacher 
educators and education researchers. This makes for an interesting 
mix of theory and practical examples found in the book. 

Keywords: social justice, stereotypes, school mathematics,  
mathematical thinking
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Though the subtitle of the book says it is 
about teaching number, the examples pertain 
to developing algebraic, analytic, geometric 
and statistical thinking, along with learning to 
understand the society one lives in. In fact, the 
variety of examples cover mathematics learning at 
all levels, including in informal settings like out-
of-school learning situations and adult education.

This book is placed in the US context of 
increasing inequity due to several reasons, 
particularly privatisation of school education, 
high-stakes evaluation and a greater digital 
divide, which we find in India too! It comprises 
32 chapters, divided into three parts. In the 
first part, the authors look at what one of them, 
Marilyn Frankenstein, calls ‘Reading the World 
with Math’. The discussion in this part is about 
the broad societal issues, and why they need to be 
linked with the math curriculum. Here you will 
also find a discussion on using math to uncover 
social biases, using it to understand the racial 
issues in the US, using it to go beyond newspaper 
headlines and to read between the lines.

In Part Two, the articles look at ways of 
engaging learners with issues of social justice 
while teaching them mathematics. For instance, 
in one of the chapters, an activity requires the 
learners to consider the current unemployment 
situation in different categories, and using 
this the teacher introduces them to rates, 
percentages, proportion, and different stages of 
data handling. In another article in this part, 
the author tells us about a unit on proportional 
reasoning in which the learners look at whether 
an equal amount of contribution to a kitty is 
fair to all those contributing to it. 

The third part comprises articles that consider 
ways of going beyond teaching math using 

social justice contexts to infuse this into other 
curricular areas. For instance, in Chapter 29, 
Peterson has written about a unit developed 
around action research undertaken by the 
learners on which presidents of the US were 
involved with slavery, and to what extent. 
He tells us how the students’ understanding 
developed while studying math fed into their 
understanding of the social studies curriculum. 
In fact, the math classroom discussion helped 
students notice how the social science textbooks 
had deliberately omitted facts about the 
presidents being slave owners!

The book has a fourth part, which gives quite 
a collection of resources, including different 
websites. Of course, as this book is already about 
a decade old, the references need updating. 

This book actively challenges the stereotype 
of mathematics—math is neutral, math is not 
really connected with our everyday lives, every 
problem has only one solution, etc. —through 
examples that force the learners to think and 
critique the social, economic and political 
environment. I see this book as being a good 
resource, not just for teacher development 
programmes, but also for supporting any adult 
who wants to teach mathematics. Any of the 
examples in this book taken up in a workshop 
discussion, could help teachers generate a 
variety of examples. For us in India, the huge 
social, economic, and digital divides throw 
up so much that needs to be questioned and 
discussed by learners, including those studying 
mathematics.

There are other books that have come out more 
recently in this area too (e. g., [5] and [6]). We 
need to see some books or website materials like 
these developed for the local contexts here.
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This is an act (see page 53) that I saw in the 
program of a magician and the mathematics 
behind it is very beautiful. 
In this act, there are always 20 coins in the tray 
but the audience does not know this.
Suppose the spectator takes x coins. 
(Remember, x <10)
So, the number of coins remaining in the tray  
= 20 – x. Now, 20 – x is a number between 10 
and 20. So, it can be written as 10 + (10 – x).  
The sum of the digits of this number will be  
=1 + 10 – x = 11 – x
In the next step, the spectator therefore adds 11 – x coins to the coins already in his 
right fist.
So, the number of coins in his right fist = 11 – x + x = 11, and this always happens, 
provided he takes less than 10 coins the first time. 
So the magician knows that there will be 9 coins left in the tray. After the spectator 
takes a random number of coins (say y coins) in his left fist, then there are 9-y coins 
left in the tray. So the magician subtracts the number of coins he sees are left in the 
tray from 9, and gives the number of coins in the left fist. Of course, the number of 
coins in the right fist is fixed at 11.

Contributed by: Kalpesh Akhani (Asst.Teacher)

The Magic Behind the Trick

Source: https://images.app.goo.
gl/7WuUvS2RhpNmAeLd9

https://images.app.goo.gl/7WuUvS2RhpNmAeLd9
https://images.app.goo.gl/7WuUvS2RhpNmAeLd9
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Manipulative Review: 
Geoboard

Reviewed by Math Space

Unlike many other teaching learning materials (TLM) for 
math, which we would like to call mat(h)erials, geoboard 
is very well known among teachers and referred to in 

teacher education programs, pre-service in particular. It is a board 
– wooden or plastic, with many pegs or nails stuck on it. One can 
stretch a rubber band along some of these pegs to create many 
polygons. The pegs can be arranged in a rectangular array or in a 
few concentric circles (Figure 1). 

Geoboards can be used to create shapes. The rectangular array 
version is a good precursor to the rectangular dot sheet. Check the 
Geometry and Geometry II Pullouts (At Right Angles, November 
2014 and March 2015) for activities transitioning from tactile 
experiences, to drawing on paper, which are appropriate for 
young children to explore shapes (Figure 2). Geoboard is a good 
precursor to dot sheets because it provides a tactile experience, 
in which shapes can be changed much faster, and polygons are 
guaranteed straight sides. Moreover, it can be lifted up and 
displayed to the whole class. 

Keywords: Geoboard, shapes, identification, exploration, reasoning, 
justification
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At the primary level, i.e., Class 1-5, it can help 
with the following concepts:

• Polygons, i.e., closed 2D shapes with only 
straight edges

• Corners and edges – especially arriving at 
the relation between number of corners 
and number of sides of a polygon

• Identifying and creating rectangles in 
different orientations

• Exploring angles – possibly with two 
rubber bands acting as the two arms of the 
angle

• Comparing angles 

Similarly, at the upper primary or middle school 
level, i.e., Class 6-8, geoboard can be used for the 
following concepts:

• Types of triangles – children can be asked 
to identify and/or make different types of 
triangles; these can be done on the circular 
geoboard as well

• Types of quadrilaterals – similar to the 
above

• Diagonals – can be shown with different 
coloured rubber bands

• Concave and convex polygons – Are all 
pegs inside the rubber band? What is 
special about the peg or vertex that is 
outside the rubber band?

Stretchability of regular rubber bands may be 
a limitation, and many rubber bands may snap 
while playing with a geoboard. Also, the pegs, 
because they are fixed, may come in the way. 
This can be resolved by using a softboard with 
pushpins replacing the pegs. 

However, a geoboard illustrates the notion 
of concave and convex shapes perfectly. In 
a geoboard one can make a polygon and its 
envelope using two differently coloured rubber 
bands. Then it becomes clear if the envelope 
is congruent to the polygon in question. For 
a concave polygon, some of the sides of the 
enveloping polygon (shown in pink) will not 
match those of the concave one (shown in 
green). These unmatched sides of the envelope 
are diagonals of the concave polygon lying 
outside (Figure 3). Also, the vertex untouched by 
the envelope is special. The internal angle at the 
vertex is a reflex angle. In a physical geoboard, 
the peg corresponding to such a vertex lies 
outside the boundary of the concave polygon 
created by the rubber band, while the remaining 
vertices corresponding to angles < 180° lie inside. 

Figure 3

Virtual geoboards,such as https://apps.
mathlearningcenter.org/geoboard/, are also 
available and a good substitute for the physical 
ones. They resemble the rectangular dot sheet 
more and the tactile aspect is reduced a bit. 
However, there is no restriction on the elasticity 
of the rubber bands and no chance of tearing 
those. They are available in multiple colours 
and can be stretched between just two points 
resembling a line segment much better than in 

Figure 2 from Sikkim textbook
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a physical geoboard. So, it can show the diagonals of a 
polygon much better than its physical counterpart. Also, 
the pegs don’t come in the way (Figures 4 and 5). 

However, the virtual geoboard doesn’t distinguish a 
vertex corresponding to a reflex angle in a concave 
polygon as the physical geoboard does (Figure 6). Also, 
the rubber bands overlap exactly, hiding the one below 
completely. Check how the red envelope hides some of 
the (yellow) sides of the concave quad (Figure 3). It is 
uncertain if the virtual geoboard can be reprogrammed 
to address these issues.

Figure 4 Figure 5

Reference
• Geometry pullout: http://publications.azimpremjifoundation.org/3090/1/geometry.pdf

• Geometry II pullout:  http://publications.azimpremjifoundation.org/1644/1/17_Teaching%20geometry%20-%20II.pdf

• Sikkim SCERT Math textbook, Class 2, pp.172-174: https://online.fliphtml5.com/iuwdn/kgob/#p=172

Figure 6. (w/o red envelope)
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Send in your pictures and narratives (or those of your students) 
to MathSpace@apu.edu.in. We’d love to hear from you!

Worksheet based on Geoboard (Class 6)
1.  Use the rectangular array geoboard and 

make the following triangles
• Make a square. Now release any one 

corner to get a triangle. Which type 
of triangle did you get? Consider 
both types of triangles, i.e., those 
classified by either side or angle.

• Now make a rectangle. Again, release 
any one corner to get a triangle. How 
is this triangle similar to the earlier 
one? How are the two different?

• Use different rubber bands to make 
as many isosceles triangles as you 
can keeping the base fixed. How 
does the angle opposite to the base 
change as you increase the height of 
the triangle?

• Can you make an equilateral triangle 
on this geoboard? Why? 

2. Take the circular geoboard.
• Can you make an equilateral triangle 

here? Can you justify using symmetry?

• Keep one vertex of the equilateral 
triangle fixed along with the line 
of symmetry passing through 
it. Change the remaining pair of 
vertices so that you get an isosceles 
triangle with the same line of 
symmetry.

• Use different rubber bands to 
make as many isosceles triangles 
as you want with the same line 
of symmetry. Write down your 
observations.

3.  Use the rectangular geoboard and make 
the following squares and rectangles
• A square whose sides are tilted

• A rectangle whose sides are tilted

• A square whose sides are tilted by an 
angle less than 45°

•  A rectangle whose sides are tilted by 
an angle more than 45° 

4. Use the rectangular geoboard and make 
the following trapeziums
•  An isosceles trapezium 

i. What shape do you get if you 
extend the sides?

ii. Is it possible that no pair of 
opposite sides ever meet? When? 

• A trapezium with a right angle and an 
acute angle 
i. What do you observe about the 

remaining angles?
ii. How many right angles are there?

• A trapezium with two acute angles 
which are opposite to each other 
i. What shape do you get if you 

extend the sides?
ii. Which quadrilateral do you get if 

the acute angles are equal?

5. Use the rectangular geoboard and make 
the following quadrilaterals
• A kite whose halving diagonal is 

shorter than the halved diagonal

• A kite whose equal angles are 
right angles [Hint: Can you use 3D 
cleverly?]

• A kite with exactly one right angle

• A kite with two unequal obtuse angles
i. What type of angles are the equal 

ones?

ii. If the unequal angles are acute, 
what type of angles are the equal 
ones?

• A concave quadrilateral that has line 
symmetry

•  A concave quadrilateral without line 
symmetry
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In this article, we solve a geometry problem from
the International Mathematics Olympiad (IMO) 2016
(Hong Kong). It was proposed by Art Waeterschoot

from Belgium, who received an honourable mention during
the IMO 2015 (Thailand). The problem was given to the
problem-solving group of our school.

Figure 1

1

A Geometry Problem 
from IMO 2016
SHREYAS ADIGA

Keywords: Triangle, parallelogram, concurrent, radical axis, 
concyclic, IMO, INMO, USAMO
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Problem 1. Triangle BCF has a right angle at B. Let A be the point on line CF such that FA = FB and F
lies between A and C. Point D is chosen such that DA = DC and AC is the bisector of ∡DAB. Point E is
chosen such that EA = ED and AD is the bisector of ∡EAC.

Let M be the midpoint of CF. Let X be the point such that AMXE is a parallelogram (where AM ∥ EX and
AE ∥ MX).

Prove that lines BD, FX and ME are concurrent.

Solution
We find three circles such that BD, FX,ME are the respective radical axes associated with pairs of these
circles. Then we apply the radical axis theorem.

From the data of the problem, we can denote ∡CAB = ∡FAD = ∡DAE = ∡EDA = θ.

The main claims in the proof are the following:

• Points D, F,B,C,X are concyclic.

• Points B,A,E,D,M are concyclic.

• Points E, F,M,X are concyclic.

• Claim 1: Points E,D,X are collinear.

Proof: Since AD is the angle bisector of ∡EAC, we have ∡CAD = ∡EAD.

Since ED = AE, △AED is isosceles and hence ∡EAD = ∡EDA. Thus ∡CAD = ∡EDA.

This implies that ED ∥ AC.

Now, as AMXE is a parallelogram, EX ∥ AC. It follows that E,D,X are collinear (Figure 1).

• Claim 2: Points D, F,B,C are concyclic.

Proof: From the observation that △ABF is similar to △ACD, we have,

AB
AC

=
AF
AD

.

Next, observe that ∡BAF = ∡FAD. It therefore follows that △ABC is similar to △AFD.

We further note that ∡AFD = ∡ABC = 90◦ + θ. Since ∡DCF = θ and ∡AFD is the exterior
angle of △CFD, we conclude that ∡FDC = 90◦ and hence B,C,D, F are concyclic with CF as
diameter. Denote this circle by Γ1 (Figure 2).

• Claim 3: B,E, F are collinear.

Proof: Observe that △CDA is isosceles, with ∡DCA = ∡DAC = θ.

From the previous claim, we know that B,C,D, F are concyclic. Hence ∡FBD = ∡FCD = θ (as
these are angles on the same segment FD).
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Figure 2

From the observation that △ABF is similar to △ADE we have:

AB
AD

=
AF
AE

.

Since ∡BAD = ∡FAE, it follows that △ABD is similar to △AFE.

Now ∡AFE = ∡ABD = θ+ ∡FBD = θ+ ∡FCD = θ+ θ = 2θ.

But in △ABF, ∡AFE = 2θ = 180 − ∡BFA. This proves the claim (Figure 1).

• Claim 4: A,B,M,D are concyclic.

Proof: Since B,C,D, F are concyclic (from Claim 2) with M as centre of the circumcircle of the
△FBC, ∡AMD = ∡FMD = 2∡ACD = 2θ.

Again, B,C,D, F being concyclic implies that ∡EBD = θ, and hence
ABD = ∡ABE + ∡EBD = θ+ θ = 2θ .

We conclude that A,B,M,D are concyclic. Denote this circle by Γ2 (Figure 2).

• Claim 5: E lies on Γ2.

Proof: From Claim 2, we know that B,C,D, F are concyclic, so ∡FBD = ∡FCD = θ.

Since E, F,B are collinear, ∡EBD = ∡FBD = θ.

But ∡EAD = θ. Thus E,A,B,D are concyclic.

Now, from Claim 4, A,B,M,D are concyclic and hence E lies on Γ2.

• Claim 6: X lies on Γ1.

Proof: From the observation that MDEA is cyclic, it follows that ∡MDX = ∡EAM. Since AMXE
is a parallelogram, ∡EAM = ∡DXM.

Therefore, △MDX is isosceles and so MD = MX, thus proving the claim (Figure 2).
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• Claim 7: M, F,E,X are concyclic.

Proof: We observe that ∡AFE = 2θ (this is the exterior angle for the triangle AFB). So EF = EA.

Since AEXM is a parallelogram, EA = MX. Therefore EF = MX and so MFEX is an isosceles
trapezium. It follows that M, F,E,X are concyclic (an isosceles trapezium is always cyclic). Let us
denote circle MFEX by Γ3.

Now observe that BD, FX,ME are the radical axes of the circle pairs (Γ1,Γ2), (Γ3,Γ1), (Γ2,Γ3).
By applying the radical axis theorem, we get the desired result. (The Radical Axis Theorem states:
The three pairwise radical axes of three circles concur at a point. The point where the lines meet is
called the ‘radical centre’ of the three circles.)

Two problems for the reader
Problem 2 (USAMO 1997). Let ABC be a triangle. Take points D,E, F on the perpendicular bisectors of
BC,CA,AB respectively. Show that the lines through A,B,C perpendicular to EF, FD,DE respectively are
concurrent.

(Here, USAMO refers to the Mathematics Olympiad held in USA. )

Problem 3 (IMO 1995). Let A,B,C,D be four distinct points on a line, in that order. The circles with
diameters AC and BD intersect at X and Y. Line XY meets BC at Z. Let P be a point on line XY other than
Z. Line CP intersects the circle with diameter AC at C and M, and line BP intersects the circle with
diameter BD at B and N. Prove that the lines AM,DN,XY are concurrent.

References
Evan Chen, Euclidean Geometry in Mathematical Olympiads, Mathematical Association of America
(MAA), 2016.
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Roots in Coefficients
We start with a simple observation. The quadratic x2 + x − 2
factors as

x2 + x − 2 = (x − 1)(x + 2) (1)

and we see that its roots are 1 and −2 which are same as the
coefficient of x and the constant term in x2 + x − 2. This
begets the question:

Is this the only quadratic polynomial with integer
coefficients whose roots are the same as the coefficient of the
linear term and the constant term?

Let’s see how we might answer this. A general quadratic
polynomial has the form

ax2 + bx + c

where a, b and c are the coefficients and a ̸= 0. It is monic if
a = 1. (More generally, a polynomial
anxn + an−1xn−1 + · · ·+ a1x + a0 is called monic if an = 1.)
If the roots of ax2 + bx + c where a ̸= 0 are α and β then

α + β = −b
a
, αβ =

c
a
.

Observe that if a, b and c are integers and we want the roots
of ax2 + bx + c to be integers, then a must divide both b and
c. This would reduce the quadratic to

a(x2 + px + q)

which is a constant multiple of a monic quadratic
polynomial. Here the integers p and q satisfy

ap = b, aq = c.

1
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Thus, finding integers a, b, c such that the roots of ax2 + bx + c are integers reduces to finding integers p
and q such that the roots of x2 + px + q are integers. So henceforth we will limit our search to monic
quadratic polynomials. The question stated earlier may thus be restated more formally as

For which integers p and q is it true that the roots of x2 + px + q are p and q?

Here the sum of the roots is p + q and their product is pq. But then

p + q = −p, pq = q,

whence (p, q) = (0, 0) or (1,−2). Thus there are two such quadratic polynomials, namely, x2 and
x2 + x − 2, whose roots are the same as the coefficient of x and the constant term.

Here we make another observation. If we multiply x2 and x2 + x − 2 by xm where m is a positive integer,
we obtain two new polynomials of degree m + 2 with their roots belonging to the set of coefficients. But
each of them has 0 as a root and many terms with zero coefficients. To avoid zero coefficients, let us
consider only polynomials with non-zero coefficients. This also rules out zero as a root since the roots are
required to be in the set of coefficients.

One is tempted to ask the same question for monic cubic and higher degree polynomials. Let us deal with
the cubic case first.

We are looking for non-zero integers a, b, c such that the roots of x3 + ax2 + bx + c are a, b, c. This means
that the relation

x3 + ax2 + bx + c = (x − a)(x − b)(x − c) (2)

is an identity in x. Equating the coefficients of like terms, we get

a = −(a + b + c), b = ab + bc + ca, c = −abc. (3)

Since c ̸= 0, ab = −1, and as a, b are integers, a, b ∈ {−1, 1} and they have opposite signs. Hence
a + b = 0. Therefore

b = ab + c(a + b) = −1 + 0 = −1

and a = 1, which shows that c = −(2a + b) = −1. Thus the cubic is

x3 + x2 − x − 1 = (x − 1)(x + 1)2

with roots (a, b, c) = (1,−1,−1).

What happens if the degree of the polynomial is greater than 3? Can we find such a polynomial of degree
n for every natural number n > 3? Let us investigate.

Let

p(x) = xn + an−1xn−1 + an−2xn−2 · · ·+ a1x + a0
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be a polynomial of degree n with non-zero integer coefficients, n > 3. Suppose the roots are
a0, a1, . . . , an−2, an−1. Then, by Vieta’s theorem,

a0 + a1 + · · ·+ an−2 + an−1 = −an−1,
a0a1 + a0a2 + · · ·+ an−2an−1 = an−2,
a0a1 . . . an−2an−1 = (−1)na0.


 (4)

Since a0 ̸= 0 ,we have a1a2 . . . an−2an−1 = (−1)n, and as each ak for k ∈ {1, 2, . . . , n − 2, n − 1} is an
integer, it must be that ak ∈ {−1, 1}.

Now observe that

a2
0 + a2

1 + · · ·+ a2
n−1

= (a0 + a1 + · · ·+ an−1)
2 − 2(a0a1 + a0a2 + · · ·+ an−2an−1)

= a2
n−1 − 2an−2 (5)

≤ 3. (6)

But a2
k = 1 for k ∈ {1, 2, . . . , n − 1} yields n ≤ 4 − a2

0. As n > 3 we get a2
0 < 1 forcing a0 = 0, a

contradiction.

This shows that there does not exist such a polynomial of degree n for n > 3.

PRITHWIJIT DE is the National Coordinator of the Mathematical Olympiad Programme of the Government 
of India. He is an Associate Professor at the Homi Bhabha Centre for Science Education (HBCSE), TIFR, 
Mumbai. He loves to read and write popular articles in mathematics as much as he enjoys mathematical problem 
solving. He may be contacted at de.prithwijit@gmail.com.
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A Call for Articles
Classroom teachers are at the forefront of helping 
students grasp core topics. Students with a strong 
foundation are better able to use key concepts to 
solve problems, apply more nuanced methods, 
and build a structure that help them learn more 
advanced topics. 

The focal theme of this section of At Right Angles 
(AtRiA) is the teaching of various foundational topics 
in the school mathematics curriculum. In relation to 
these topics, it addresses issues such as knowledge 
demands for teaching, students’ ideas as they come 
up in the classroom and how to build a connected 
understanding of the mathematical content.

Foundational topics include, but are not limited to, 
the following: 
•	 Number systems, patterns and operations
•	 Fractions, ratios and decimals
•	 Proportional reasoning
•	 Integers
•	 Bridging Arithmetic-Algebra
•	 Geometry
•	 Measurement and Mensuration
•	 Data Handling
•	 Probability

We invite articles from teachers, teacher educators 
and others that are helpful in designing and 
implementing effective instruction. We strongly 
encourage submissions that draw directly on 
experiences of teaching. This is an opportunity to 
share your successful teaching episodes with AtRiA 
readers, and to reflect on what might have made 
them successful. We are also looking for articles 
that strengthen and support the teachers’ own 
understanding of these topics and strengthen their 
pedagogical content knowledge.

Articles in this section may address key questions 
such as -
•	 What challenges did your students face while 

learning these fundamental mathematical topics?
•	 	What approaches that you used were successful?
•	 	What preparations, in terms of knowing 

mathematics, enacting the tasks and analysing 
students work were needed for effective 
instruction?

•	 	What contexts, representations, models did you 
use that facilitated meaning making by your 
students?

Send in your articles to 
AtRiA.editor@apu.edu.in

Tech Space
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The Closing Bracket . . .
This column has typically featured teachers who have 
been innovative problem solvers. The introduction 
of the element of computational thinking in NEP 
2020 has made several teachers begin to explore why 
and how computational thinking can improve their 
pedagogy, apart from the value addition to their 
students’ thinking and problem-solving skills.

CSpathshala (https://cspathshala.org/) is an ACM 
India (Association for Computing Machinery India) 
initiative to bring a modern computing curriculum 
to Indian schools with 400,000 students learning CT 
(2/3rd from govt schools in rural areas). The CTiS 
(Computational Thinking in Schools https://india. 
hosting.acm.org/CTiS/) conference is an annual 
event organised by the CSpathshala community 
to provide a platform for teachers, educators 
and experts to share their best practices as well as 
challenges faced in implementing computational 
thinking in education. The 4th edition -CTiS 
2022- will be held in Pune on 8th and 9th July. 
The conference has received 180+ abstracts from 
educators and teachers across the country and also 
from Singapore, Thailand and Brazil. The teacher 
accounts in this narrative are based on some of these 
abstracts. There are many pioneers in this effort both 
in India and abroad and clearly, teachers have risen 

to the challenge to push new frontiers and set new 
standards in pedagogy and student empowerment.

Sunita Maurya and Deepa Sharma are both teachers 
from the School of Scholars, Nagpur. Their abstract 
was based on the class project on the topic of “Water 
Conservation: Why and How?” based on the lesson 
Water- the precious resource of Std -VII.

In their own words, we followed the cycle of 
discussion, experimentation, and reviews until we 
got the outcome. In every discussion, we discussed the 
outcomes followed by abstraction (to pick the necessary 
information from the collected data ) and analysis of it, 
and again reworked.

What is heartening was that the anticipated 
outcome was not the development of computational 
thinking. From their abstract- In this project-based 
learning, our objective was to sensitise all the students 
about water conservation by developing awareness 
about different sources of water, how people around 
the world are facing water crisis, and what we can do 
at the individual level.

Clearly, they met their objective - On an average, 
every student was able to save around 100 to 150 litres 
of water daily and they concluded that if everyone 
saves a small amount of water then we can minimise 
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the global issues of shortage of water. Look at this list 
drawn up by the students at the end of the project.

Suggestions- Where to minimise the use of water
1.	 Do not keep the tap on while brushing teeth 

or washing utensils.
2.	 Use a bucket and mug instead of a shower.
3.	 Minimise the use of washing machines.
4.	 Repair a leaking tap immediately.
5.	 Reuse the water wherever possible, such 

as: water used for mopping can be used for 
washing floors, drained water from water 
filters can be used for watering plants and 
other household work.

Suggestions for new models which help to save water
1.	 Model-1 Use of plastic bottles for watering 

plants - we can hang one at some height and 
fix a drip tube near the roots or

2.	 Model-2 Fix any bottle with holes in it into 
the soil and fill water in it for watering.

3.	 Model-3 They also suggested developing 
some devices like a regulator in every tap and 
shower which will help to control the usage of 
water as per the need.

At the same time, these teachers were mindful of the 
value of computational thinking.

•	 Students followed all the steps of the CT while 
doing this project. The CT approach improves 
the student's engagement in the learning process 
in very systematic ways.

•	 Activity 3 was actually time-consuming. And here 
we applied the CT skill to complete the project by 
decomposing the task into smaller tasks.

•	 We discussed and motivated the students to focus 
on patterns, such as how many times activities 
are repeated in a day, which container is used 
multiple times, and for what purpose. All these 
activities were very helpful in estimating the 
usage of water.

•	 With the help of algorithms learned in CT, they 
tried to write an algorithm on how to work on 
any project-based concepts.

Clearly, computational thinking is intertwined 
with several disciplines, as other abstracts also 
showed. Teacher S. Sreedevi of Dr. B.R. Ambedkar 
Gurukulam, Palnadu, and teachers M Purna Bhavani 
and V Syamala Gowri of Dr. B.R. Ambedkar 
Gurukulam, Bapatla used the steps of computational 
thinking in student explorations of the Triangle 
Inequality theorem and in understanding the 
formula for the sum of the first n odd numbers, 
respectively. Both these schools come under the 
fold of APSWREIS (Andhra Pradesh Social Welfare 
Residential Educational Institutions Society) 
which serves students from severely disadvantaged 
backgrounds. On the other hand, teacher Sheetal 
Marwade (again from the School of Scholars) used 
CT to teach Sanskrit grammar and vocabulary, 
decomposing words phonetically and observing 
patterns in forming new words. A most interesting 
project on Quiet Time was carried out in Dr. Kalmadi 
Shama Rao High School in Pune by teachers Pallavi 
Naik and Pallavi Iyer. The problems of teaching and 
functioning in a noisy school was decomposed into 
factors over which they had no control (the school 
was in a busy traffic zone) and those over which they 
did (ambient noise). As students analysed patterns 
in both factors, they understood how they could 
work towards a quiet and peaceful environment. 
The school implemented a Quiet Time at the end of 
the working day- One of the strongest takeaways from 
the implementation of quiet time was that the noise 
levels that were initially at 85-90 dB at the end of the 
day dramatically dropped to around 72-75 dB during 
the QT. One Std 9 student said that the Quiet time 
helped her to introspect about her day and think about 
ways to improve. She said that it helped her become 
more aware of what she was doing. A Std 6 student 
said that there is so much noise all day, that they look 
forward to the quiet time at the end of school and like 
to carry that feeling of peace home with them.

Let’s think about this!

Sneha Titus 
Associate Editor
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SPATIAL THINKING 
WITH 3-D OBJECTS

PADMAPRIYA SHIRALI
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SPATIAL THINKING 
WITH 3-D OBJECTS
Our brains have adapted over the long period of evolution to a 3-D world and we are able to 
assess our location and position in space in relation to other objects. When we look at an object 
depicted on paper (2-D), we automatically construct a 3-D image. We often fail to notice that 
several actions that we perform in our daily life involve spatial thinking and understanding. As I 
navigate through the map on my phone or fill up a refrigerator with containers of various sizes, 
I use spatial understanding. All of us rely on spatial thinking much more than we realise. 

A lot of the geometry we study in school is about 2-D shapes and relationships amongst these 
shapes and their attributes. However, we live in a 3-D world which is even richer in intricate 
geometric facts and relations. To work with these spaces requires a good understanding of the 
properties of these objects and ways of visualisation and abstraction. Some concepts we use 
in 2-D geometry may not apply to 3-D shapes. For example, the shortest path connecting two 
points on a sphere is not the straight line connecting the two points, and this has implications 
for air travel. 

What is spatial thinking? It is the way the brain processes the position and shape of an object in 
space. It is through spatial thinking that we understand the location and dimensions of objects, 
and how different objects relate to each other. It is through such thinking that we construct 
mental images of objects and visualise them. 

The double helix is a famous example of a result of spatial thinking which meets certain 
requirements. It is a complex 3-D structure with two parallel but displaced spiralling chains. 

What does spatial thinking involve? Is it a single skill? Or is it multiple skills? The following are 
clearly involved:

1.  Abstracting the necessary and crucial information (distance, length, coordinates, 
dimension).

2.  Focusing on a certain object embedded in 
a complicated background and noticing 
the relationships between the objects and 
suppressing information not relevant to a task. 

3.  Representing a design (different views, 
knowledge of projections, graphs, maps).

4.  Scaling an object up or down, or manipulating it 
in some way. 

5.  Visualising rotations or symmetry.

6.  Visualising an object with a single fold or double 
fold.

7.  Navigating.

8.  Memory, synthesis, filling a missing link (closure).

9.  Making deductions, evaluating (for actions like 
taking a detour).

It is thinking which involves the concept of space, tools 
for representation and a process of reasoning. Figure 1
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HOW IMPORTANT IS SPATIAL THINKING?

MRI-based research of the brain has revealed that 
the part of the brain which becomes active during 
tasks involving spatial thinking is the same as the 
part used while solving mathematics problems. 
Spatial thinking can be improved through training 
and exposure to related tasks. 

Many specialists use spatial thinking in their work 
areas. A civil engineer or an architect performs 
this feat while designing a building. It is the same 
capacity that helps a surgeon to navigate the 
human body and a pilot to fly an aircraft. 

While spatial perception and spatial 
understanding is fundamental to the human 

thinking process, it poses a challenge in many 
ways. Our spatial perception can be fooled quite 
easily, and there are many such puzzles which 
challenge our perception of objects. Here are two 
such disturbing examples!

Figure 2

BUILDING SPATIAL THINKING 

At primary school level, various activities that 
involve usage of spatial language, gestures for 
directional movements, symmetry patterns, 
reading maps, playing with tangrams are all part 
of an attempt to build spatial thinking abilities in 
2-D space. 

Spatial thinking in 3-D must similarly involve 
handling of 3-D objects, manipulating and 
studying them. Understanding the location 
(position) and dimensions (such as the length 
and size) of 3-D objects, and studying how 
different objects are related to each other is an 
important part of this study. It involves building or 
constructing these objects with blocks or plasticine 
and clay, studying the nets of such structures, 
working on paper and pencil tasks, and using 
geometric software. 

While we manage our daily lives with the spatial 
sense we have developed over time, coping with 
the complex spatial problems of the world today 
requires us to use GIS or ‘Geographic Information 
System’ technology. 

Spatial thinking can be integrated into various 
subjects as it has relevance in many areas. 
However, it is good to study it in a 3-D context 
as a separate unit. Also, regular polyhedra have 
such beauty to them that it would be a great pity 
not to make their study a part of the geometry 
curriculum. 

Da Vinci was one person from history who had a 
tremendous capacity for visualisation. Sculptors 
like Michelangelo used it when they visualized a 
future sculpture trapped inside a lump of stone. 

Note: Various activities involving usage of 3-D 
objects can be given to students in a scaffolded 
manner to build their visualisation skills. The 
activities incorporate several minor skills like 
determining and comparing direction, orientation, 
location, distance, size, colour, shape, and other 
attributes. Some initial activities can also be used 
in primary school. 

More advanced activities will use major skills like 
changing perspective (reference frame), changing 
orientation (mental rotation), transforming 
shapes, changing size, moving wholes and 
reconfiguring parts. 

Spatial thinking involves visualizing relations, 
imagining transformations from one scale to 
another, mentally rotating an object to look at 
its other sides, creating a new viewing angle 
or perspective, and remembering images in 
places and spaces. Spatial thinking also allows 
us to externalize these operations by creating 
representations such as a map. 

This article focuses on simple mathematical 
objects in 3-D to develop the capacity to visualize 
and abstract out their properties. 
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ACTIVITY 1

Objective: Building a model of a given 3-D construction 
Materials: Interlocking cubes, complex structure made with cubes

Let students work in pairs. One student builds a 
complex 3-D structure. The other student must 
observe the construction carefully and build a 
similar one (same size, colour combination and 
orientation as the one built by the partner). 

Can they describe their shape using spatial 
language (top, left, at right angles, parallel to, …)?

Figure 3

Figure 4

Building complex models helps the students 
to stay focused on the subtler features of a 
problem. They need to notice the colour, the 
length, perceive the parts and the whole and their 
relationships. 

They will also need to notice the angles and the 
orientation. 

ACTIVITY 2

Objective: Building a model using a picture of a 3-D construction

The ability to interpret a drawing, visualise the 
hidden cubes and reconstruct a model takes 
the student to the second level of the spatial 
understanding process. 

Given some pictures of models, can the students 
reproduce the models with blocks accurately 
(assuming no missing pieces)?

Can they figure out the number of blocks they 
would need for each of these models before 
building them?

How accurate is their reasoning?

What are the special features of each model?

Does it taper upwards? Does it have symmetry?

Will it look the same if it is rotated?

Figure 5 Figure 6
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What is the length of the base? What is the 
breadth of the base? What is the height at its 
highest point?

How would they figure out the volume of an 

irregular object?

Can the students compute the volume for 
these irregular models? What are the different 
approaches they might use?

ACTIVITY 3

Objective: Building 3-D structures with plasticine/ clay and straw/ toothpicks  
Materials: Straw/Toothpicks and Plasticine/Clay, Chart displaying prisms and 
pyramids with names. 

Let students build 3-D structures in pairs to create 
different 3-D objects. Let them explore the shapes 
and record the data about vertices, edges and 
faces.

Figure 9

Figure 10

At the end the student pairs can record and 
consolidate their findings in a table as follows:

Object Vertices Edges Faces

Pyramid with a 
square base

5 8 5

Triangular prism

…

Students should discuss their findings at the end. 

How do the numbers of vertices, edges and faces 
relate to each other? Is there a pattern?

Let students explore ways of figuring out the 
surface areas of these objects; e.g., using their nets.

How would one find the volumes of these objects? 
Can the students come up with some ideas?

Project

Pyramids have held a great fascination for many 
civilisations. Egyptians used them as burial tombs. 
One such pyramid is the great pyramid of Giza. It 
measures nearly 480 ft in height and 750 feet at 
the base and has a slope of 50°. Students can build 
a scale model of this pyramid and study its features.

If you were to walk around the base, how far 
would you walk? 

What shape would emerge if you sliced a pyramid 
in half horizontally? Vertically through the apex? 

Figure 11

Figure 7 Figure 8
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ACTIVITY 4

Objective: Designing the nets for simple 3-D objects 
Materials: Prism and pyramid shaped objects 

  

Figure 12

Given the pictures of some 3-D objects, can the 
students draw the nets? 

Here are some possible nets of a square pyramid. 

Figure 13

Students will need to clearly know the difference 
between a pyramid and a prism. A pyramid has 
one pointed end; slant edges connect it to all 
the vertices of a polygonal base. The base can be 
a triangle, producing a tetrahedron; it can be a 
square, giving rise to a square pyramid; or it can be 
a pentagon, or a hexagon, …. There are therefore 
infinitely many types of pyramids. There is no limit 
to the number of sides the base can have.

A prism has the same face at both ends. The sides 
of the face can vary from 3 to any number. 

Students tend to have a fixed idea of prisms as 
they see prisms mainly in the physics lab. However, 
a prism can have a multi sided base. It can even be 
L-shaped as shown here.

Figure 14

A prism can be cut into layers parallel to one 
side and all the layers will be exactly the same as 
shown in the figure.

Figure 15

In contrast, a pyramid cannot be cut into layers 
which are identical to one another. The green 
square in the figure is not the same as the base of 
the pyramid.

Figure 16
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ACTIVITY 5

Objective: Drawing 3-D objects or constructions on isometric/triangular paper

Let the students make drawings (isometric 
sketches) of different solids on isometric paper. 

Here are two such isometric sketches:

Figure 17

Students can build a variety of different structures 
and draw them on dot paper. The skill of 
representing 3-D in 2-D form needs to be built up 
gradually and students will need hand holding.

Figure 18 Figure 19

After making the isometric sketch, the students 
should compare it with the object to check 
whether the two correspond exactly. A few more 
complex ones:

Figure 20

ACTIVITY 6

Objective: Visualising shapes from nets 
Materials: Different nets with colour patterns or numbering

If this net is folded, what shape will the object 
have?

To come up with the answer, students need to 
form a mental picture of the prism being folded. 

While doing so, they must keep track of the 
relative positions of the different coloured sides. 
What shape will be opposite the pentagon? 

Figure 21

Figure 22
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If the net in Figure 22 is folded, what coloured 
square will be opposite the pink square? What 
coloured squares will be adjacent to the green 
square? 

What shape will the net in Figure 23 give rise to?

Figure 23

 

ACTIVITY 7

Objective: Sketching views of simple 3-D structures with two objects 
Materials: Couple of blocks arranged touching each other

Drawing the top view, front view and side view is 
a skill which develops gradually and it is important 
to start with a few simple objects. (Note: Isometric 
sketches are made on isometric dot sheets, as 
shown above, while the views are generally made 
on square or rectangular grid sheets.)

Here are a few sample drawings.

Figure 24

Let the student look at it from the top and draw a 
top view. It can be followed by a front view and a 

side view. They can use either isometric or square 
grid paper to aid in the drawing process.

Figure 25

One can increase the complexity of the structure 
gradually. A few more examples of drawings on 
dot paper are shown in Figure 26. 

Figure 26
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Views

They can study various views of cube structures as 
shown here.

A Rubik cube will make a very good model for 
such drawings. Many matching exercises can be 
created. 

Challenge!

Construct a structure made up of 8 identical cubes 
and having the largest possible surface area. 

Figure 27

ACTIVITY 8

Objective: Understanding polyhedra and regular polyhedra 
Materials: Various mathematical 3-D objects of different sizes or  
a chart containing pictures of various 3-D mathematical objects 
Vocabulary: face, edge, vertex, polygon, polyhedron, regular, convex

Initiate a discussion on sorting the collection into 
two sets. Students may sort them on the basis of 
curved surface and plane surface. 

Discuss why the word ‘polyhedron’ is used to refer 
to an object with polygonal faces. 

The word ‘Poly’ refers to many and ‘hedra’ refers 
to faces. Polyhedron means a ‘many-faced object’. 
(The word polygon similarly refers to a many-
angled shape.)

Polyhedra are objects which are 3-D, have 
polygonal flat faces, straight edges and vertices 
where three or more faces meet. We will consider 
only convex polyhedra; they have no surface 
indentations or holes.

Cubes and prisms are examples of polyhedra. 
Cylinders and spheres are not polyhedra.

Can the students now attempt at sorting the 
polyhedra into different categories? They will 
notice that in addition to prisms and pyramids, 
there are other objects which are also polyhedra. 

Figure 28
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They will see that some of these objects are highly 
symmetric: they look the same looking down at 
each face and looking down at each vertex. Their 
faces are regular, congruent polygons. These are 
the regular polyhedra. They are also known as 
platonic solids. 

A polyhedron can fail to be regular in many ways. 
For example, its faces may not all be congruent 
copies of one another; rather, the faces may be 
regular polygons with different numbers of sides 
(there are many such polyhedra, highly symmetric 
in appearance). Or the polyhedron may not be 
convex, i.e., it may have indentations.

(Note: It is not necessary to bring in the notion of 
polyhedral angles here.) 

Discuss, experiment and discover: Raise questions 
which help students discover that a minimum of 
3 faces need to meet at a vertex to form a closed 
shape.

How many equilateral triangles can meet at a 
vertex?

Students will notice that if they have six equilateral 
triangles meeting at a vertex, the triangles will lie 
flat. Can they justify why it is so?

How many squares can come together at a vertex?

How many regular pentagons can come together 
at a vertex?

Can regular hexagons come together at a vertex? 
Why or why not?

This can lead to the discovery that at any vertex 
of a convex 3-D polyhedron, the sum of all the 
angles will always be less than 360 degrees. Can 
they generalise the result?

Figure 29

Rotating the objects

The students will need to be given explicit 
instructions while rotating an object initially. They 
first start the process by physically rotating them. 

At the second stage, they try to rotate the object 
using their mind’s eye. 

What would the object look like if it was tilted by 
45°? 90°? 120°? 

Give students some pictures of pairs of rotated 
objects. 

Ask: Are the two objects different? Or are they 
actually the same, merely oriented differently?

It’s great fun to turn these objects into art pieces 
by colouring them or drawing patterns on them. 

Plane symmetry and rotational symmetry

Figure 30

Discuss plane symmetry with examples. 

An object has plane symmetry if it can be divided 
into two halves by a plane so that each half is a 
reflection of the other across the plane.

Such a plane is called a plane of symmetry. 

A cuboid has 3 such planes of symmetry. 

How many planes of symmetry does a cube have?

Discuss rotational symmetry with examples. 

Practical demonstration is advisable, by piercing 
holes and passing a straw (or a taut thread, or a 
wire) through the faces or corners of the paper 
models. 

If a 3-D figure is turned around a fixed line, it is 
called a rotation. 

Objects that look the same after a certain amount 
of rotation are said to have rotational symmetry. 

Figure 31
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Rotational symmetry is measured in terms of 
‘order’. When we rotate an object like a cube 
through 360° about the axis connecting the 
centres of a pair of opposite faces, the cube fits 
exactly onto itself four times: after rotations of 
90°, 180°, 270° and 360°; so this is called rotational 
symmetry of order 4. The axis about which it is 
rotated is called the axis of rotational symmetry. 
The order of rotational symmetry of a triangular 
pyramid would be 3, as it fits onto itself after 
rotations of 120°, 240° and 360°.

Figure 32

ACTIVITY 9

Objective: Study of regular polyhedra (tetrahedron) 
Materials: Straws and plasticine/thread

Thus, the chief reason for studying regular 
polyhedra is still the same as in the time of the 
Pythagoreans, namely, that their symmetrical 

shapes appeal to one’s artistic sense.

– H S M Coxeter

What closed structure can be built with 
equilateral triangles where every vertex has 3 
adjacent triangles?

Figure 33

Let students build 3 equilateral triangles about a 
vertex, using straws. 

They will see that they have built a regular 
tetrahedron (4-faced polyhedron). 

Has it formed a closed figure? 

Verify that there are 3 triangular faces at each 
vertex.

What types of symmetry does it have? 

Figure 34

Does it have any plane symmetry? What will the 
plane pass through? How many such planes can 
you find in the regular tetrahedron?

Net: Students should be encouraged to design 
nets for a tetrahedron. They can design and fold 
the net to make a solid shape. 

Pass straws (or wires or taut threads) through 
holes to check for rotational symmetry. 

Does it have any rotational symmetry? Through 
which points does the axis of symmetry pass? 
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What is its order?

A Dihedral meter (a flexible L-shaped angle 
measure) can be used to measure dihedral angles 
(this is the angle at which adjacent faces meet). 
Students should be able to make such devices for 
themselves.

Figure 35

In Figure 35 it is being used to measure the angle 
between the faces of a dodecahedron. 

Students can explore such objects in a variety of 
different ways, bringing different skills to these 
explorations:

• They can measure the angles between 
surfaces using a dihedral meter. 

• They can study the relationship of the side to 
the surface area. 

• They can generate different views of the 
object and sketch them. 

There are many resources available online which 
reinforce their skills and knowledge (e.g., Figure 36).

Figure 36

Optional exploration

Cross sections: Students 
can also explore 

horizontal or vertical cross 
sections of the objects 

Figure 37
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ACTIVITY 10

Objective: Study of regular polyhedra (cube)  
Materials: Straws and plasticine/thread 

What closed structure can be built using identical 
squares where every vertex has 3 adjacent 
squares?

Figure 38

Let students build 3 adjacent squares with straws 
to form a corner. Let them build more squares 
with three squares at each vertex. 

They have formed a Hexahedron (cube). 

Does it form a closed figure? Verify that there are 
3 square faces at each vertex. 

They can explore it and discover the relationship of 
the side to the surface area and volume of the cube.

They can look for a relationship between the side 
and any interior diagonal, and between the side 
and any face diagonal. 

Does the cube have any plane symmetry? 

Does it have any rotational symmetry? Through 
which points does the axis of symmetry pass 
through?

They can bring their understanding of coordinates 
to a 3-D object and describe various points in 
terms of coordinates.

Figure 39

They can also design the net for a cube and fold it 
to make a solid shape. 
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ACTIVITY 11

Objective: Study of regular polyhedra (Octahedron) 
Materials: Straws and plasticine/thread

What closed structure can be built with 
equilateral triangles where every vertex has 4 
adjacent triangles?

Figure 40

Let students build four equilateral triangles 
around a vertex. Let them build more triangles 
with four triangles meeting at each vertex. 

A regular octahedron has been created. Verify 
that 4 faces meet at each vertex. 

Does it have any plane symmetry?

Does it have any rotational symmetry? Through 
which points does the axis of symmetry pass 
through? How many such axes of symmetry does a 
regular octahedron have?

Cross sections

How would the cross sections (vertical and 
horizontal) of an octahedron look?

Figure 41

ACTIVITY 12

Objective: Study of regular polyhedra (Icosahedron) 
Materials: Straws and plasticine/ thread

What closed structure can be built with equilateral 
triangles where 5 triangles meet at every vertex? 

Figure 42

Let students build and join together 5 equilateral 
triangles, forming a convex shape. In successive 
steps, at each new vertex they can build 3 more 
equilateral triangles as shown in Figure 42. 

Figure 43

The figure closes to form an Icosahedron. 

Explore the structure for symmetry. 

Building an icosahedron (indeed, building any of 
the regular polyhedra) using modular origami can 
be great fun (see Figure 43). 
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ACTIVITY 13

Objective: Study of regular polyhedra (Dodecahedron) 
Materials: Straws and plasticine/thread

What closed structure can be built with regular 
pentagons where 3 pentagons meet at every 
vertex? 

Let students build a regular pentagon and join 
together 5 regular pentagons on all its sides. 

Figure 44

Figure 45

Three pentagons together can be joined to form 
a polyhedral vertex, but four pentagons together 
have a vertex angle that adds up to more than 
360° making a concave vertex. 

In successive steps, at five new vertices they can 
build five more pentagons as shown in Figures  
44-45. The shape closes to form a Dodecahedron.

Findings

How many regular polyhedra are possible to build?

We have seen that it is possible to build regular 
polyhedra with either 3 or 4 or 5 equilateral 

triangles meeting at each vertex, but not with 6; 
with 3 squares meeting at each vertex, but not 
with 4; and with 3 regular pentagons meeting at 
each vertex, but not with 4 or more.

Is it possible to build a convex shape using only 
regular hexagons? Three regular hexagons make 
360° which then create a flat vertex. Therefore, 
this is not possible.

Is it possible to build a convex shape using only 
regular polygons having more than 6 sides? 
Polygons with more than 6 sides have angles 
which exceed 120°, so it is not possible to join 
three of them together at a vertex. Therefore, this 
too is not possible.

Hence, it is possible to have only 5 regular solids. 

Students can now create a table for the five 
regular polyhedra recording the number of faces, 
edges and vertices, and describe the face of each 
of the platonic solids.

Name of 
Polyhedron

Faces (F) 
Vertices (V)

Edges (E)
Tetrahe-

dron

Tetrahedron 4 4 6

Students can now verify the relationship which 
they had noticed earlier between the vertices, 
faces and edges of a Polyhedra structure. 

This is Euler’s formula: F + V = E + 2 where F, V 
and E stand for the number of faces, vertices and 
edges of the polyhedron respectively.

Figure 46
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